2021 Upper East Coast Water Supply Plan Update

Welcome
2021 UEC Stakeholder Meeting #2
September 3, 2021

Questions and public comment will occur after each presentation.
Welcome

Tom Colios
Section Leader, Water Supply Planning, SFWMD
Today’s Agenda

- Opening Remarks – Tom Colios
- Public Water Supply in the UEC Planning Area – Brad Macek
- East Coast Floridan Model Overview – Rob Earle
- Draft 2021 UEC Water Supply Plan Update – Nancy Demonstranti
 - Posted online August 25, 2021
- Next Steps – Nancy Demonstranti
Water Supply Plan Requirements

- 20-year planning period
- Demand estimates and projections
- Resource analyses
- Issue identification
- Evaluation of water source options
- Water resource development
 - Responsibility of water management district
- Water supply development
 - Responsibility of water users
- Minimum flows and minimum water levels (MFLs)
 - Recovery and prevention strategies
After the District’s Governing Board approves the water supply plan update:

- All local governments must amend their Comprehensive Plan to incorporate a Water Supply Facilities Work Plan within 18 months of the plan update’s approval
 - If the plan update is approved in November 2021, Work Plans will be due by May 2023
- Utilities identify the projects to be developed
- Utility annual progress reports
 - District’s automated WaSUP database – due annually in November
Questions and Public Comment

- If you are participating via Zoom:
 - Use the Raise Hand feature

- If you are participating via phone:
 - *9 raises hand
 - *6 mutes/unmutes your line

- When you are called on, please state your full name and affiliation prior to providing comments and/or questions
Public Water Supply in the UEC Planning Area

James Christopher
Tetra Tech

Brad Macek
Utility Director, City of Port St. Lucie
The Floridan Aquifer and Beyond!
Expanding the City of Port St. Lucie’s Water Supply Portfolio

September 3, 2021

James Christopher, PE, Tetra Tech; Brad Macek, City of Port St. Lucie
Utility Background
City of Port St. Lucie’s Water System
City of Port St. Lucie’s Existing Water Supply Sources

Utility Service Area
(138 mi²)

Prineville SAS and Floridan Wellfields & WTP’s

James E. Anderson (JEA)
Floridan Wellfield & WTP

City Limits
(120 mi²)
City of Port St. Lucie: Responds to Outsize Population Growth

“One of the fastest-growing cities in America” – TCPalm

Utility Service Area Expansion
McCarty Ranch Water Supply Plan
The goal of this work was to identify and evaluate innovative water supply strategies that could be integrated within the McCarty Ranch site and meet future water demands through the 30-year planning period.
Future Water Needs: Historical Average Daily Water Usage

Water Demand: 12.7 – 16.0 MGD

Gallons per Capita Day (GPCD)

Year

111 110 90.3 87.5 87.8 83.3 84.1 84.8 85.6 89.6 92.6 94.3 91.6

100 GPD Selected based on Middle of Usage Range
Service Area Population Projections

- **BEBR Medium**
- **BEBR High**
- **SFWMD**

Service Area Population (capita)

Year

- 2015
- 2020
- 2025
- 2030
- 2035
- 2040
- 2045
- 2050
- 2055

Graph showing population projections for different scenarios.
Raw Water Demand Projections

- WUP Annual Allocation
- Current Pumping Capacity
- WUP Max Month Allocation
- Annual Average Raw Water Demand
- Max Month Raw Water Demand

<table>
<thead>
<tr>
<th>Year</th>
<th>WUP Annual Allocation (MGD)</th>
<th>Treatment Pumping Capacity (MGD)</th>
<th>Potential Limited Pumping Capacity at JEA (MGD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>20.2</td>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>21.3</td>
<td>25.3</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>27.9</td>
<td>29.4</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>32.4</td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>36.0</td>
<td>35.2</td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td>38.7</td>
<td>37.7</td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td>41.4</td>
<td>40.3</td>
<td></td>
</tr>
<tr>
<td>2045</td>
<td>44.3</td>
<td>43.1</td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td>47.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2055</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Water Supply Source: Surficial Aquifer, Floridan Aquifer
- Total Permitted: 51.38 MGD, 46.82 MGD, 34.77 MGD

- Water Supply Source: Surficial Aquifer
- WUP Annual Allocation: 5.0 MGD
- Treatment Pumping Capacity: 5.0 MGD
- Potential Limited Pumping Capacity: 5.0 MGD

- Water Supply Source: Floridan Aquifer
- WUP Annual Allocation: 46.38 MGD
- Treatment Pumping Capacity: 41.82 MGD
- Potential Limited Pumping Capacity: 29.77 MGD

- Total Permitted: 34.77 MGD

- Year: 2010, 2015, 2020, 2025, 2030, 2035, 2040, 2045, 2050, 2055

- Units: MGD (Million Gallons per Day)
Projected water demands reveal a need for at least **5.1 MGD** of additional maximum day finished water capacity.

While water use permit is sufficient, groundwater modeling & water quality shows potential need of upwards of **12 MGD**.

Securing up to **20 MGD** was investigated to allow City to conservatively & reliably meet the future 30-yr demands.
Identification of Future Water Supply Sources

- Reclaimed Water from Glades
- Seawater Desalination
- McCarty Ranch Surficial Aquifer Withdrawal
- Rangeline RO Wellfield
- Seawater Desalination
- Surface Water from C-23 Canal
- Seawater Desalination
- McCarty Extension WQRA
- Seawater Desalination
Water Supply Alternatives Evaluated

• **Alternative 1:** Rangeline RO Wellfield

• **Alternative 2:** Rangeline RO Wellfield and McCarty Ranch with Water Quality Restoration Area

• **Alternative 3:** McCarty Ranch with Water Quality Restoration Area

• **Alternative 4:** McCarty Ranch with Water Quality Restoration Area and Aquifer Storage & Recovery, ASR

• **Alternative 5:** McCarty Ranch with Reclaimed Water

• **Alternative 6:** Rangeline RO Wellfield and Seawater Desalination

• **Alternative 7:** Seawater Desalination
Non-Cost Factors

1. Source Water Quality.
2. Diversification of Water Supply Sources.
3. Ecological Benefit.
4. Benefit to Community.
5. Institutional Control.
6. Permittability.
7. Schedule.
8. Risk from Third-Party Actions.
10. Meet Treated Water Quality Goals.
11. Treatment and Facility Phasing.
12. Residuals Management.
The Future Plan
Recommendations and Next Steps

- The **Rangeline RO wellfield with the McCarty Ranch surface water supply alternative** offers the City the best opportunity to **diversify** their water supply portfolio while also **meeting** the projected **demands**.

- Implementing the Phase I of the Rangeline RO wellfield would allow the City to have more time to **further investigate** the feasibility and implementation of the **McCarty Ranch water supply** alternative in Phase II.

- The overall cost/benefit analysis also revealed that using **ASR** as a means of supplementing surface water storage **increases** the water supply **reliability** at a relatively minimal additional cost.

- The **recommended** water supply concept consists of developing and treating the **Rangeline RO wellfield** supply in Phase I, followed by the development of the **McCarty Ranch surface water supply** concept with ASR in Phase II.

![Diagram](image)

10 MGD + 10 MGD = 20 MGD
Proposed Water Supply Sources and Facilities

- **Utility Service Area** (138 mi²)

- **City Limits** (120 mi²)

Phase 1:
- Rangeline Floridan Wellfield and RO WTP

Phase 2:
- McCarty Ranch Reservoir
- Surface WTP
City purchased the McCarty Ranch Preserve and Extension properties for developing new and alternative water supplies.

With SFWMD and FDEP support, the City is making beneficial use of Extension property by converting the fallow farmland into a Water Quality Restoration Area (WQRA).

The WQRA diverts, stores, and naturally treats peak flows from the C-23 canal to avoid excess loading of nutrient-laden freshwater into the St. Lucie River.

Existing two (2) pumping stations at 20,000 gpm and 28,000 gpm.

The proposed use of the diverted surface water for potable supply.
Thanks for Your Attention
If you are participating via Zoom:
 • Use the Raise Hand feature

If you are participating via phone:
 • *9 raises hand
 • *6 mutes/unmutes your line

When you are called on, please state your full name and affiliation prior to providing comments and/or questions
East Coast Floridan Modeling to Support the 2021 Update to the Upper East Coast Water Supply Plan

Stakeholder Meeting #2 – September 3, 2021

Presented by Rob Earle
Lead Modeler, Groundwater Modeling Unit
South Florida Water Management District
The Surficial Aquifer System (SAS) use is limited
- Increases in water use expected to be supported by
 the Floridan Aquifer System (FAS)
- Brackish water from the FAS can serve as a
 supplemental Agricultural (AG) water source

Maintain wells critical to long-term monitoring and modeling

New, Avon Park Permeable Zone wellfields should have greater spacing and lower per-well capacity

Paraphrased from 2016 UEC WSP Update, Chapter 7:
Agenda

- ECFM Model overview & re-calibration
- Application to UEC Planning scenarios
- UEC Planning scenario results
East Coast Floridan Model

- MODFLOW-SEAWAT Model (USGS 2012)
- Period of Record: 1989-2012
- 288 Monthly simulation (stress) periods (288/12=24 years)
- Cell size: 2,400 ft × 2,400 ft
- 7 model layers including:
 - Layer 1: Upper Floridan Aquifer
 - Layer 3: Avon Park Permeable Zone
- Calibrated to water levels and water quality (TDS concentration – mg/L)
Update to the East Coast Floridan Model

- Hydrostratigraphy (model layer elevation) data from the East Central Florida Transient Expanded (ECFTX)

- Hydraulic Conductivity data from six new aquifer test sites around the domain

- Re-calibrated the model and met calibration criteria for water levels and water quality

Model Application:
Upper East Coast Planning Scenarios
2019 Base Condition

- Public Supply, Power Generation, Landscape/Recreational and Commercial/Industrial/Institutional demands from historical 2019 pumpage data
- Agricultural demands estimated based on AFSIRS (simulates irrigation demands)

2045 Future Condition

- Public Supply, Power Generation and Commercial/Industrial/Institutional demands based on future population growth rate
- Agricultural demands based on future land use (FSAID-2019*) and AFSIRS
- Landscape/Recreational demands based on 2045 planning projections

Looked at the differences in Water Levels and Water Quality (TDS) between 2019 and 2045 in the UFA and the APPZ (Model layers 1 and 3)

Limitations in Simulating Demands

- Each simulation is 24 years
 - Same as calibration period
- Model does not simulate annual demand growth
- Simulated demands are “instant on”
- Raw water demand shown for all use types
- Results from the 2045 simulation are considered conservative

![Graph showing 2019 and 2045 modeled demands with years 1 to 25 labeled. The x-axis represents years, and the y-axis represents demand (mgd). The graph shows a trend where demand increases over time.]
Regional Model Limitations

- Large model cell size (2400’ X 2400’)
 One cell covers 132 acres!
 - Cannot accurately simulate local drawdowns
- Regional model may not capture local heterogeneity in the Floridan aquifer system and the response at individual wells
- Regional model results should be used as an overall planning tool; results should not be considered absolute
Floridan Aquifer Demands in the Upper East Coast (UEC) Planning Area

<table>
<thead>
<tr>
<th>Water Use Category</th>
<th>2019 (mgd)</th>
<th>2045 (mgd)</th>
<th>Difference (mgd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG</td>
<td>37.42</td>
<td>31.22</td>
<td>-6.20</td>
</tr>
<tr>
<td>CII</td>
<td>0.18</td>
<td>0.18</td>
<td>0.00</td>
</tr>
<tr>
<td>L/R</td>
<td>2.72</td>
<td>4.17</td>
<td>1.45</td>
</tr>
<tr>
<td>PG</td>
<td>1.45</td>
<td>3.34</td>
<td>1.89</td>
</tr>
<tr>
<td>PS</td>
<td>36.18</td>
<td>59.74</td>
<td>23.56</td>
</tr>
<tr>
<td>Total</td>
<td>77.95</td>
<td>98.65</td>
<td>20.70</td>
</tr>
</tbody>
</table>

AG = Agricultural
CII = Commercial/Industrial/Institutional
L/R = Landscape/Recreational & Golf
PG = Power Generation
PS = Public Supply
2045 Projected Demands at FAS Wellfields

City of Stuart
- 5.4 mgd increase
 - No pumping in 2019
 - 4 mgd from North in 2045
 - 1.4 mgd from Central in 2045
 - UFA only

St Lucie County
- 2.62 mgd increase
 - no pumping in 2019
 - mostly APPZ in 2045
 - 2.6 mgd APPZ, 0.02 mgd UFA

Port St Lucie Util
- JEA: 0.94 mgd decrease
- Prineville: 0.27 mgd decrease
- Southwest: 12.96 mgd increase
 - 3.53 mgd from UFA, 9.43 mgd from APPZ

City of Vero Beach
- 1.67 mgd increase, UFA only

Fort Pierce Util Auth
- 2.43 mgd increase
 - 33rd St UFA increase = 1.17 mgd
 - 33rd St APPZ increase = 0.28 mgd
 - West UFA increase = 0.94 mgd
 - West APPZ increase = 0.05 mgd

Hobart & Oslo
- 1.93 mgd increase Hobart
 - 0.7 mgd decrease Oslo
 - UFA only

Okeechobee Clean Energy Center (PG)
- 1.37 mgd increase UFA
- 2.07 mgd increase APPZ

Treasure Coast Energy Center (PG)
- 1.89 mgd increase, UFA only
Approx 17 feet of drawdown at St. Lucie County (North)
- No demand in 2019
- 4 mgd in 2045

Approx 6.5 feet of additional drawdown at Treasure Coast Energy Center PG wells
- 1.9 mgd increase

Approx 1 foot of drawdown at City of Stuart wellfield.
- 0.02 mgd demand from UFA

Up to 3 feet of rebound at Port St. Lucie JEA wellfield
- 0.42 mgd decrease
- AG decreases may also contribute
- TDS differences of <100 mg/L in most of the area
- Increase in TDS at St. Lucie County (North):
 - Increase in demands 0 to 4 mgd
 - TDS increase as high as 4,800 mg/L
- Slight increase in TDS at Fort Pierce Utility Authority
 - 33rd St demand increase from 1.64 to 2.81 mgd
 - West demand increase from 1.32 to 2.26 mgd
- Slight decrease in TDS at Oslo WTP
 Demand decreases from 6.28 to 5.58 mgd
Difference in TDS concentrations within the ECFM 2019 scenario model run (Year 1 to 24)

Highest TDS increase within UEC Planning area is near St. Lucie County (North Wellfield @ Airport)

- 2,100 mg/L
- No pumping in 2019 at North Wellfield
- Increase likely due to Oslo WTP and AG demands in 2019
Difference in TDS concentrations within the ECFM 2045 scenario model run (Year 1 to 24)

Highest TDS increase within UEC Planning area is at St. Lucie County (North Wellfield @ Airport)
- 4,600 mg/L
- North Wellfield demand = 4 mgd in 2045
- Up to 3 feet of drawdown at St. Lucie Co (North Wellfield). 4 mgd UFA demand
- Approx 2 feet of drawdown at City of Stuart wellfield. 2.6 mgd APPZ demand
- Approx 2 feet of rebound at Port St. Lucie Utility (JEA Wellfield). 0.52 mgd decrease
- Approx 1 foot of rebound in western St Lucie Co due to AG demand reduction
Avon Park Permeable Zone Water Quality (TDS) Difference (2045 – 2019)

- **St. Lucie County (North Wellfield)**
 - No wells in the APPZ
 - TDS increases as high as 1,000 mg/L

- **Port St. Lucie (Southwest Wellfield)**
 - Increase in TDS as high as 700 mg/L
 - 2019 demand = 0 mgd
 - 2045 demand = 9.43 mgd

- **City of Stuart**
 - Increase in TDS as high as 1,040 mg/L
 - 2.6 mgd APPZ demand in 2045
Difference in TDS concentrations within the ECFM 2019 scenario model run (Year 1 to 24)

Highest TDS concentration within the UEC Planning Area = 2,300 mg/L near Village of Tequesta wellfield

- Demand = 1.99 mgd in 2019
Difference in TDS concentrations within the ECFM 2045 scenario model run (Year 1 to 24)

- Highest TDS concentration within the UEC Planning Area = 2,800 mg/L near Town of Jupiter wellfield
 - Demand = 8.27 mgd in 2045
Individual Monitoring Well Hydrographs
Model Conclusions

Water Levels
- UFA – Except for northeastern St. Lucie County, predicted drawdown in most of the UFA are less than 2.5 ft
- APPZ – Less than 1.5 ft of drawdown predicted throughout the UEC Planning Area, except in northeastern St. Lucie County where a 3 ft decrease predicted

Water Quality
- UFA – Except for northeastern St. Lucie County, predicted TDS changes in the UFA are less than 250 mg/L
- APPZ
 - Potential 500-1,000 mg/L increase in TDS with 2019 demands in central and eastern Martin County and southeastern St. Lucie County over 24 year simulation period
 - Potential upward movement of APPZ water into the UFA may degrade water quality in northeastern St. Lucie County
 - Additional 700-1,040 mg/L increase from 2019 to 2045 in TDS predicted at Port St. Lucie’s Southwest Wellfield, Stuart, and St. Lucie County Utilities North Wellfield; less than 250 mg/L everywhere else

FAS appears capable of meeting projected demands of all users through 2045 with appropriate wellfield management
Modeling Team

- Mirza Billah, Ph.D., E.I.T.
- Rob Earle
- Uditha Bandara, Ph.D., P.E.
Questions and Public Comment

- If you are participating via Zoom:
 - Use the Raise Hand feature

- If you are participating via phone:
 - *9 raises hand
 - *6 mutes/unmutes your line

- When you are called on, please state your full name and affiliation prior to providing comments and/or questions
2021 Upper East Coast Water Supply Plan Update

Nancy Demonstranti, P.G.
Upper East Coast Plan Manager, SFWMD
UEC Planning Area

- All of Martin and St. Lucie counties and the northeastern portion of Okeechobee County
- 1,230 square miles
- 15 public supply utilities
- Major agricultural industry
- Important natural and water resources
 - C-23, C-24, C-25, and C-44 canals
 - St. Lucie River and Estuary
 - Indian River Lagoon
 - North Fork of the Loxahatchee River
Public Participation

- Governing Board updates
- Two stakeholder workshops and one technical model workshop
- Discussions with local government, agricultural, and utility representatives
- Draft plan documents posted online August 25, 2021, for public comment
- Written comments due back October 1, 2021
2021 Upper East Coast Water Supply Plan Update Documents

Planning Document/Appendices

Support Document

Presenter: Nancy Demonstranti
Planning and Support Document Outlines

Executive Summary
Chapter 1: Introduction
Chapter 2: Demand Estimates and Projections
Chapter 3: Demand Management – Water Conservation
Chapter 4: Water Resource Protection
Chapter 5: Water Source Options
Chapter 6: Water Resource Analyses
Chapter 7: Water Resource Development Projects
Chapter 8: Water Supply Development Projects
Chapter 9: Conclusions and Future Direction

Appendices:
- A: Water Demand Projections
- B: Public Supply Utility Summaries
- C: St. Lucie Estuary MFL and Prevention Strategy
- D: Groundwater Monitoring and Analysis
- E: Wastewater Treatment Facilities

Support Document:
- Chapter 1: Introduction
- Chapter 2: Water Conservation
- Chapter 3: Water Use Permitting
- Chapter 4: Water Resource Protection
- Chapter 5: Ecosystem Restoration and Water Resource Development
- Chapter 6: Water Source Options and Treatment
- Appendix: Conservation Glossary

Presenter: Nancy Demonstranti
Statutory Goal of Water Supply Plans (Section 373.709, F.S.)

To identify sufficient water supply sources and future projects to meet existing and future reasonable-beneficial uses during 1-in-10-year drought conditions through **2045** while sustaining water resources and related natural systems.
2021 UEC Plan Update Objectives

- Identify water supplies
- Increase water conservation & alternative water source development
- Protect & enhance natural systems
- Ensure compatibility and linkage with other efforts
- Provide linkage with local governments

Presenter: Nancy Demonstranti
UEC Planning Area

- **Population:**
 - 2019: 468,499
 - 2045: 686,409
 - 47% increase

- **Irrigated agricultural acreage:**
 - 2019: 107,383
 - 2045: 79,004
 - 26% decrease

- **Gross water demands:**
 - 2019: 291.11 mgd
 - 2045: 281.18 mgd
 - 3% decrease
Population Projections

Permanent Residents

- Martin
 - 2019: 150,000
 - 2045: 200,000

- St. Lucie
 - 2019: 250,000
 - 2045: 500,000

Legend:
- PS Population
- DSS Population

Presenter: Nancy Demonstranti
Irrigated Agricultural Areas

Data from: Florida Department of Agriculture and Consumer Services (FDACS) Florida Statewide Agricultural Irrigation Demands Geodatabase (FSAID)
Agricultural Acreage (FSAID)

* Other category includes sod, greenhouse/nursery, field crops, fruit (non-citrus), and potatoes.
Agriculture Demands Summary

<table>
<thead>
<tr>
<th>Agriculture Subcategory</th>
<th>2019</th>
<th>2045</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crops</td>
<td>172.74</td>
<td>128.12</td>
</tr>
<tr>
<td>Livestock</td>
<td>1.91</td>
<td>1.91</td>
</tr>
<tr>
<td>Aquaculture</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>UEC Planning Area Total</td>
<td>174.72</td>
<td>130.10</td>
</tr>
</tbody>
</table>

Demands presented in million gallons per day under average rainfall conditions.
Total Water Demands Summary

<table>
<thead>
<tr>
<th>Water Use Category</th>
<th>2019</th>
<th>2045</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Supply</td>
<td>56.26</td>
<td>81.62</td>
</tr>
<tr>
<td>Domestic Self-Supply</td>
<td>5.76</td>
<td>5.61</td>
</tr>
<tr>
<td>Agriculture</td>
<td>174.72</td>
<td>130.10</td>
</tr>
<tr>
<td>Commercial/Industrial/Institutional</td>
<td>4.43</td>
<td>5.74</td>
</tr>
<tr>
<td>Landscape/Recreational</td>
<td>32.03</td>
<td>40.64</td>
</tr>
<tr>
<td>Power Generation</td>
<td>17.91</td>
<td>17.47</td>
</tr>
<tr>
<td>UEC Planning Area Total</td>
<td>291.11</td>
<td>281.18</td>
</tr>
</tbody>
</table>

Demands presented in million gallons per day under average rainfall conditions.
Water Conservation

- **Agriculture**
 - FDACS best management practices
 - More efficient irrigation systems

- **Public supply**
 - Indoor and outdoor programs
 - Conservation rate structures

- **Public supply per capita use rate**
 (gallons per capita per day)

 - 2000: 167
 - 2014-19: 130
 - 22% decrease

- **12 mgd potential savings through conservation**
 - Urban – 6 mgd
 - Agriculture – 6 mgd

The cheapest gallon of water is the gallon we don’t use
Water Resource Considerations

- In many areas, especially coastal areas, large increases in withdrawals from the surficial aquifer system are limited due to low aquifer productivity.
- Regulatory limitations on surface water availability
 - C-23, C-24, and C-25 canals
 - Lake Okeechobee Service Area (including C-44 Canal)
 - Freshwater discharges affecting coastal resources
 - Timing and volume
- Long-term availability of the Floridan aquifer system
- Climate change and sea level rise
Water Resource Protection

- **Minimum Flows and Minimum Water Levels**
 - St. Lucie Estuary
 - North Fork of Loxahatchee River (Lower East Coast)
 - Lake Okeechobee (Lower East Coast)

- **Water Reservations**
 - North Fork of the St. Lucie River

- **Restricted Allocation Areas**
 - C-23, C-24 and C-25 canal system
 - Lake Okeechobee Service Area
 - North Palm Beach County and Loxahatchee River Watershed waterbodies
 - Floridan wells in Martin and St. Lucie counties
Water Source Options & Alternatives

- Surface Water
- Reservoirs*
- Seawater*
- Reclaimed Water*
- Aquifer Storage & Recovery*
- Fresh Groundwater
- Saline Groundwater*
- Conservation*

* Alternative water source

Presenter: Nancy Demonstranti
<table>
<thead>
<tr>
<th>Category</th>
<th>Surface Water</th>
<th>Fresh Groundwater</th>
<th>Brackish Groundwater</th>
<th>Reclaimed Water</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Supply</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Domestic Self-Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Landscape/Recreational</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Commercial/Industrial/Institution</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Power Generation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Groundwater Sources

Surficial Aquifer System

Floridan Aquifer System
Surficial Aquifer Wells

Floridan Aquifer Wells

Presenter: Nancy Demonstranti
Groundwater Resource Evaluation & Analysis

- **Data sources:**
 - Water use permit information
 - Regulatory limits on surface water withdrawals
 - Groundwater model scenarios
 - Groundwater level and salinity monitoring data
 - Demand estimates and projections

- **Minimal increases in projected demands from the surficial aquifer system through 2045**
 - East Coast Surficial Model under development

- **East Coast Floridan Model**
 - 20 mgd increase in FAS demands (2019-2045)
Water Reuse

- **Presenter:** Nancy Demonstranti

![Water Reuse Chart](chart.png)

- **Graph Title:** Water Reuse (mgd)
- **Y-axis:** Water Reuse (mgd)
- **X-axis:** Years (1994 to 2018)

Legend:
- Green Bar: Wastewater Treatment Facility (with water reuse)
- Purple Bar: Wastewater Treatment Facility (without water reuse)

Note: A small amount of reclaimed water is used at the SWFR.
South Florida is particularly vulnerable

Rate of sea level rise is predicted to accelerate

The SFWMD is preparing by:

• Conducting research
• Performing computer simulations
• Analyzing vulnerabilities in the current water management system and developing adaptation strategies
• Developing East Coast Surficial Model scenarios

Coordinate with other local and state agencies and stakeholders
Saltwater Intrusion

- Saltwater interface maps
 - Updated in 2009, 2014 and 2019 by SFWMD
- Chloride graphs

Port St. Lucie Utility Systems Dept. 56-00142-W (SAS)
Water Resource Development Projects

- Implementation of CERP and other projects*
- Resource protection rules
- Hydrogeologic investigations
- Groundwater monitoring and modeling
- Alternative water supply and conservation programs

* MFL recovery and prevention strategies rely on CERP implementation.
Water Supply Development

- 16 proposed projects

- Potable
 - Most utilities have sufficient capacity and permit allocations to meet 2045 demands
 - 8 projects proposed by 4 utilities
 - Only 1 utility needs projects to meet 2045 demand projections or treatment requirements

- Nonpotable
 - 8 projects proposed by 4 utilities

Presenter: Nancy Demonstranti
Water Supply Projects Summary

<table>
<thead>
<tr>
<th>Source</th>
<th>Number of Proposed Projects</th>
<th>Capacity (mgd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface water/stormwater*</td>
<td>4</td>
<td>28.89</td>
</tr>
<tr>
<td>Surficial aquifer system</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Floridan aquifer system</td>
<td>7</td>
<td>29.86</td>
</tr>
<tr>
<td>Aquifer storage and recovery</td>
<td>1</td>
<td>7.50</td>
</tr>
<tr>
<td>Reclaimed water**</td>
<td>4</td>
<td>17.20</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>83.45</td>
</tr>
</tbody>
</table>

* Includes potable and nonpotable projects.

** Reclaimed water is not used as a potable water source in the UEC Planning Area; however, it is an alternative water supply used to reduce reliance on traditional water sources.
Future Direction

- Continue implementation of:
 - SAS and FAS monitoring programs
 - Water conservation programs
 - Alternative water supply development projects
 - CERP and other ecosystem restoration projects

- Evaluate, monitor, and design solutions in response to sea level rise and climate trends
 - Complete East Coast Surficial Model

- Implement long-term management measures for the FAS in coordination with utilities

- Coordinate with other agencies, local governments, and utilities on water supply elements
Draft Plan Conclusion

The future water needs of the region can continue to be met through the 2045 planning horizon with appropriate management, conservation, and implementation of projects in this plan.

- Construction of potable water supply development projects by one PS utility.
- Implementation of the CERP Indian River Lagoon – South Project and other ecosystem restoration projects.
Next Steps

- **August 25**: Posted draft documents
- **September 3**: Stakeholder meeting #2
- **September 9**: Presentation to Governing Board
- **October 1**: Deadline for external comments
- **November 10**: Final plan to Governing Board for consideration
Written comments are due by October 1, 2021, to:

Nancy Demonstranti
Upper East Coast Plan Manager
ndemonst@sfwmd.gov
(561) 682-2563

- If you are participating via Zoom:
 - Use the Raise Hand feature

- If you are participating via phone:
 - *9 raises hand
 - *6 mutes/unmutes your line

- When you are called on, please state your full name and affiliation prior to providing comments and/or questions