

East Coast Surficial Model (ECSM) Peer Review Meeting No. 1

Resource Evaluation Section September 7, 2022

Introduction

Pete Kwiatkowski, P.G.

Agenda

- Morning Session: > Peer Review Process > Model Overview > Specialized District Packages > Hydrostratigraphy > Saltwater Intrusion Mapping > SEAWAT Modifications > Panel Discussion > Public Comment
- Afternoon Session:
- ET-Recharge and Return Flow
- ➢Input Data Sets
- Model Calibration Plan
- ➤ Calibration Criteria
- Panel Discussion
- Public Comment

Peer Review Process

Alicia Magloire

Peer Review and Process

➤What is Peer Review?

- An independent evaluation of work products by individuals with similar competencies as the producers of the work products
- Involves soliciting feedback regarding decisions on input data and assumptions, methodology, and resulting work products

Peer Review Process

The process will be conducted through a dedicated, electronic web board, and all subsequent documents and correspondence will also be available at the SFWMD's web board https://sfwmd.websitetoolbox.com/east-coast-surficial-model-ecsm-peer-review-914820

ECSM Statement of Work for Peer Review

The peer-review panel is tasked with evaluating the overall appropriateness of the model and to answer the following questions:
Was the model developed using good modeling practices?
Did the model address peer-review comments to the extent possible?
Did the model achieve reasonable calibration statistics?
Can the model be applied for its intended purpose?

Peer Reviewer Scope of Work

- Duties of the Peer Review Panel:
- Conduct reviews of the conceptual model, calibration plan, model input datasets, model calibration, sensitivity analysis, and documentation
- Evaluate the suitability of the model for water supply planning, scenario evaluation and groundwater availability
- Participate in meetings and workshops

ECSM Task Timeline

Task	Task Completion Date	Panel Deliverable Date
Model Conceptualization and Calibration Strategy	September 2022	October 2022
Transient Data Sets and Calibration Status	December 2022	January 2023
Final Model Calibration Results	March 2023	April 2023
Model Calibration Report	July 2023	August 2023

СТ SOU т н FL OR DA WA т R ΜА N А GEME ΝТ DIS

Peer Review Panel

Weixing Guo, Ph.D., P.G. – Panel Chair
Wendy Graham, Ph.D. – Panelist
Michael Sukop, Ph.D., P.G. - Panelist

East Coast Surficial Modeling Team

SFWMD Staff:

- ≻Anushi Obeysekera, E.I.T
- ≻Yirgalem Assegid, Ph.D.
- ≻David Butler, P.G.
- Sondipon Paul, Ph.D., E.I.T
- ≻Jagath Vithanage, Ph.D.
- Contract Staff:

Jeff Giddings, Tradewinds Group, LLC

- ≻Kevin A. Rodberg
- ➢Brian Moore
- ➢ Jose Grisales
- ≻Alicia Magloire
- Stacey Coonts, G.I.T.

Model Overview

Anushi Obeysekera, E.I.T.

Objectives of ECSM

- Evaluate if the water supply demands within the East Coast water supply planning regions can be met within a 20-year planning horizon without undue effects on existing legal users of water and natural systems
- Simulate and evaluate the effects of sea-level rise and saltwater intrusion on the groundwater system

East Coast Surficial Model

➢ Model Boundaries

- ➢Northern: Vero Beach
- Southern: Marathon
- Eastern: Atlantic Ocean
- ≻Western: L-2 Canal

East Coast Surficial Model

➤ Calibration Period of Record: 1985 – 2012

≻ Verification Period of Record: 2013 – 2016

Daily Stress periods

➤ Cell size: 1,000 ft x 1,000 ft

≻5 model layers

Calibrated to water levels (daily), water quality (Total Dissolved Solids [TDS]) mg/L (monthly), and structure flows (30-day rolling average)

Code Selection

Code selection was based on:

- Ability to simulate contiguous wetlands, and operational rules within canals, stormwater treatment areas (STA) and water conservation areas (WCA)
- Ability to analyze potential degradation of water quality due to saltwater intrusion and sea level rise
- Adhere to timeline to meet water supply planning needs (2023)
- Selected Code: SEAWAT v 4.0 (USGS 2008) updated with SFWMD packages

Specialized District Packages

Anushi Obeysekera, E.I.T.

ѕоитн FL ORIDA W A т = R ΜΑΝΑ GEME N т DI S т R СТ

Wetland Package

- The wetland package was developed by Restrepo et al., (1998)
- Simulates surface water flow and surface water/groundwater interaction through wetlands
- Top layer 2D overland and/or groundwater flow
- When a wetland cell is inundated, flow is governed by Kadlec equation

Routing Packages

Diversion Package (MDIV)

- Uses source and sink cells to move water from one location to another
- Allows the user to set the head upstream and downstream, and manipulate daily flow rates, which is useful in modeling flood protection or areas where flow rates change during the wet and dry seasons

RDF Package (Reinjection Drainflow)

- Uses source and sink cells to move water from one location to another
- Allows the user to change the stage constraints on a daily basis, which is useful in modeling operational schedules
- Currently implemented to move water between the STAs, WCAs, and ENP

Data Management Packages

Multibud (MBUD) Package

Post-processing utility

- Creates water budgets for either the entire model domain or specific subregions
- Used especially during structure flow calibration, when water budgets of contributing areas are used to determine flow through structures
- The functionality allows for water budgets to be evaluated without the need for the cell by cell flow file

Utility Generation (UGEN) Package

- Used to generate time-dependent model input
- Links static input parameters with dynamic temporal data
- Increases efficiency because static information is only read once.
- Significantly reduces file size

Hydrostratigraphy

Stacey Coonts, G.I.T.

Wells with Hydrogeologic Data

- ≻702 wells used across the model domain
- Leveraged all data sources (e.g., DBHYDRO, consultant reports, etc.)
- Used to identify hydrostratigraphy, model layering, and aquifer parameters

Hydrostratigraphy

- Based on Q layers described by Perkins (1977) and Tamiami Formation
- Q layers correspond to eustatic sea-level changes during the Pleistocene era
- Subaerial exposures are associated with layers of lower vertical hydraulic conductivity that can be used to delineate hydrostratigraphic layers and therefore model layers

Q Layers

- >Q1 through Q5, with Q1 being the oldest
- Signs of low sea-level and subaerial exposures:
 - Root casts and plant remains
 - Freshwater limestone
 - Caliche and laminated crusts
 - Solution surfaces, soil and soil breccias
- Signs of high sea-level
 - Rapid growth of coral reefs, sand bars, and other marine deposits
 - ≻Marine fossils

Model Layers

	Age	Model Layer	Q Layer	Stratigraphy		Lithology		Hydrostratigraphy	
	Holocene			Lake Flirt Marl, Undifferentiated Soil and Sand		Marl, peat, organic soil, and quartz sand		Water Table Aquifer	
		Layer 1		Pamlico Sand Miami Limestone		Quartz sand			
			Q4, Q5			Oolitic limestone and fossiliferous limestone	1	<pre></pre>	
				Fort	Thompson Formation	Marine limestone, gastropod-rich freshwater limestone, sandy limestone, and fossiliferous		Ę	
	Plaistocana	ene Layer 2 Q	Layer 2 Q2, Q3			quartz sandstone	ter	Biscayne	
Pleistoce	Fielstocelle			Key Largo Limestone		Coralline limestone and minor amounts of sandy limestone	fer Sys	Aquifer	
			Laver 2 01	Anastasia Formation		Coquina, shell, quartz sand, and sandy limestone	al Aqui	Semiconfining	
		Layer 5	Ŷ	Caloosahatchee Formation		Sandy to shelly marl, clay, silt, and quartz sand	Surfici		
F		Layer 4		mation	Pinecrest Sand Member	Quartz sand, bivalve-rich quartz sandstone and sandy limestone, shell, mudstone, and minor amounts of phosphate grains		<u>}</u>	
	Pliocene	Layer 5		Tamiami Forı	Ochopee Limestone Member	Bivalve-rich limestone, bivalve-rich quartz sand and sandstone, and moldic quartz sandstone		Grey Limestone Aquifer	

Geologic Map of South Florida

Lithology Photos

Miami Limestone Model Layer 1

_sfwmd.gov

Fort Thompson Formation Model Layers 1-3

20

Caloosahatchee Formation Model Layers 2-3

Anastasia Formation Model Layers 1-3

Layer 1

Holocene Sediment

- Lake Flirt Marl and undifferentiated soil and sand marl, peat, organic soil and quartz sand
- ▶Q5 and Q4
 - Pamlico Sand quartz sand

- Miami Limestone oolitic limestone and fossiliferous limestone
- Fort Thompson Formation fossiliferous marine limestone, gastropod-rich freshwater limestone, sandy limestone, and fossiliferous quartz sandstone
- Key Largo Limestone coralline limestone and minor amounts of sandy limestone
- Anastasia Formation coquina, shell, quartz sand, and sandy limestone

Layer 2

►Q2 and Q3

- Fort Thompson Formation fossiliferous marine limestone, gastropod-rich freshwater limestone, sandy limestone, and fossiliferous quartz sandstone
- Key Largo Limestone coralline limestone and minor amounts of sandy limestone
- Anastasia Formation coquina, shell, quartz sand, and sandy limestone
- Caloosahatchee Formation sandy to shelly marl, clay, silt, and quartz sand

Age	Model Layer	Q Layer		Stratigraphy	
Pleistocene	Layer 2	Q2, Q3	Fort Thompson Formation	Key Largo Limestone	Anastasia Formation
			C	aloosahatchee Forma	ition

Layer 3

≽Q1

Fort Thompson Formation – fossiliferous marine limestone, gastropod-rich freshwater limestone, sandy limestone, and fossiliferous quartz sandstone

- Key Largo Limestone coralline limestone and minor amounts of sandy limestone
- Anastasia Formation coquina, shell, quartz sand, and sandy limestone

Caloosahatchee Formation – sandy to shelly marl, clay, silt, and quartz sand

Age	Model Layer	Q Layer		Stratigraphy	
Pleistocene	Layer 3	Q1	Fort Thompson Formation	Key Largo Limestone	Anastasia Formation
			C	aloosahatchee Forma	ation

Layer 4

Pinecrest Sand Member of the Tamiami Formation

Quartz sand, bivalve-rich quartz sandstone and sandy limestone, shell, mudstone, phosphate grains

Age	Model Layer	Q Layer	Stratigraphy			
Pliocene	Layer 4		Tamiami Formation	Pinecrest Sand Member		

Layer 5

Ochopee Limestone Member of the Tamiami Formation

- Locally known as the Grey Limestone aquifer within LEC
- Bivalve-rich limestone and bivalve-rich quartz sand and sandstone, moldic quartz sandstone

Age	Model Layer	Q Layer	Stratigraphy		
Pliocene	Layer 5		Tamiami Formation	Ochopee Limestone Member	

31

Layer 1 Top Elevation and Thickness

Layer 2 Top Elevation and Thickness

Layer 3 Top Elevation and Thickness

Layer 4 Top Elevation and Thickness

Layer 5 Top Elevation and Thickness

Layer 5 Bottom Elevation

Composite Hydraulic Properties of the Surficial Aquifer System

Hydraulic Conductivity

Transmissivity

Saltwater Intrusion Mapping

Pete Kwiatkowski, P.G.

SOUTH FLORIDA WATER MANAGEMENT DISTRICT SFWMD Saltwater Interface Mapping Project

- Strategy -- Compare interface positions (i.e., 2009, 2014, 2019), note areas of concern, adjust monitoring, and adapt as necessary
- ➢ Update maps every 5 years
- Use all available data (USGS, SFWMD, Counties, Water Use Permittees)
- Furthest inland extent dry season
- 250 milligrams per liter (mg/L) chlorides (isochlor)
- Coastal aquifers except Miami-Dade (USGS)

Data

Map ID	SFWMD Facility ID	Project Name	Well Name	XCOORD	YCOORD	Cased Depth (feet lbs)	Total Depth (feet lbs)	Chloride (mg/L)	
1	115935	DEERFIELD BEACH PUBLIC WATER SUPPLY	D1-A (G2718)	944746	725422	100	150	182	
2	149498	DEERFIELD BEACH PUBLIC WATER SUPPLY	D11 (G2729)	949765	725218	20	180	186	
3	115984	DEERFIELD BEACH PUBLIC WATER SUPPLY	CWI	950221	724407	150	160	50	
4	115976	DEERFIELD BEACH PUBLIC WATER SUPPLY	D12 (G2730)	951147	724120	20	180	4760	
5	115985	DEERFIELD BEACH PUBLIC WATER SUPPLY	CWD	950198	724065	190	200	2250	
6	115978	DEERFIELD BEACH PUBLIC WATER SUPPLY	D13 (G2731)	950594	723439	20	170	682	
7		BROWARD COUNTY / USGS	FP MW-1 (G-2892)	953429	723245	108	155	36	
8	149548	DEERFIELD BEACH PUBLIC WATER SUPPLY	D10 (2728)	948052	722957	20	180	237	
9	115943	DEERFIELD BEACH PUBLIC WATER SUPPLY	D7 (G2725)	949933	722800	60	170	181	
10	115979	DEERFIELD BEACH PUBLIC WATER SUPPLY	D14-A (G2733)	951596	722753	100	150	181	
11	115936	DEERFIELD BEACH PUBLIC WATER SUPPLY	D2-A (G2719)	944329	722439	100	150	128	
12	115982	DEERFIELD BEACH PUBLIC WATER SUPPLY	D17 (G2737)	949053	722435	100	150	225	
13	115980	DEERFIELD BEACH PUBLIC WATER SUPPLY	D15-A (G2735)	951110	720940	100	150	234	
14	115983	DEERFIELD BEACH PUBLIC WATER SUPPLY	DR-1 (G2738)	942847	720664		170	110	
15	115981	DEERFIELD BEACH PUBLIC WATER SUPPLY	D16 (G2736)	952549	719549	10	260	245	
16	6428	NORTH SPRINGS IMPROVEMENT DISTRICT	4	906867	718939	80	130	55	
17	115942	DEERFIELD BEACH PUBLIC WATER SUPPLY	D6 (G2724)	952492	717676	60	180	207	
18	6431	NORTH SPRINGS IMPROVEMENT DISTRICT	9	902493	717446	80	130	60	
19	6424	NORTH SPRINGS IMPROVEMENT DISTRICT	6	906227	716828	80	130	53	
20	115973	DEEREIELD BEACH PUBLIC WATER SUPPLY	D9 (G2727)	948468	715524	80	180	181	
21	6425	NORTH SPRINGS IMPROVEMENT DISTRICT	7	906186	714820	80	130	55	
22	136498	BROWARD COUNTY 24/NORTH REGIONAL P.W.S.	G-2893	953145	713873	167	177	1130	
23	6423	NORTH SPRINGS IMPROVEMENT DISTRICT	24	900319	713297	80	130	54	
24	136493	BROWARD COUNTY 24/NORTH REGIONAL RWS	G-2694	952025	712690	85	125	21	
25	136492	BROWARD COUNTY 24/NORTH REGIONAL PWS	G-2693	953145	712686	200	229	40	
26	100102	USGS	G-2752	951245	708113	250	255	21	
27	136873	TOWN OF HILLSBORO BEACH	HBBSW1(39th Street)	951253	707989		257	58	
20	125972	TOWN OF HILLSBORD REACH	HPPMP1 (plant 110)	047572	707104		110	52	
20	150072	PROWN OF HILLSBORD BEACH	(FD MAN 2 (C 2277)	049921	707104	121	121	21.6	
29	125205	DOMAND REACH DUDUC WATER SUDDUX	FP WW-5 (0-2277)	940631	702135	101	200	31.0	
21	136300	POMPANO BEACH PUBLIC WATER SUPPLY	SWI4-D	949590	700570		120	301	
31	136102	POMPANO BEACH PUBLIC WATER SUPPLY	SWI1D	943550	600354	-	200	374	
32	130133	POMPANO BEACH PUBLIC WATER SUPPLY	SWILD	947553	600252	-	120	371	
33	130299	USCS	C DAVE	049675	606456	117	120	255	
34	125225		0-2443	948075	605034	117	132	207	
35	130320	POWPANO BEACH PUBLIC WATER SUPPLY	SWID-D	94/869	695024		200	397	
36	130327	POMPANO BEACH PUBLIC WATER SUPPLY	SWID-S	94/869	695024	1	120	108	
3/	130308	POIVIPANO BEACH PUBLIC WATER SUPPLY	SWIS-D	946184	094743	-	200	154	
38	136325	POMPANO BEACH PUBLIC WATER SUPPLY	ISWIS-S	946184	694/43		120	125	
39	136304	POMPANO BEACH PUBLIC WATER SUPPLY	SWI3-D	950151	694392		180	8820	
40	136305	POMPANO BEACH PUBLIC WATER SUPPLY	5W13-5	950151	694392		120	1650	

sfwmd.

Broward County Estimated Position of the Saltwater Interface Surficial Aquifer System March/April/May 2019

Chloride Time-Series Graphs West and East of the Interface

East

SEAWAT2022

Kevin A. Rodberg

Enhancements to SEAWAT-2000WMD Variable Density Flow (VDF) and Integrated MT3DMS Transport Processing (IMT) with the District "WMD packages" including: -- Reinjection Drainflow (RDF) -- Multi-Operation Diversion (MDIV) -- Block Centered Flow Wetlands (BCF WTL)

-- and a new Layer Property Flow Wetlands (LPF WTL)

SEAWAT Background and How is it Related to MODFLOW?

SEAWAT-2000¹ is a coupled version of MODFLOW-2000² and MT3DMS³ [as published by the USGS] designed to simulate three-dimensional, variable density groundwater flow and multi-species transport.

SEAWAT is generally divided into 3 processes: [GWF, VDF, IMT] + LMT

- "Variable Density Flow" (VDF) process in SEAWAT is based on the constant density "Ground Water Flow" (GWF) process of the MODFLOW packages.
- The VDF process uses the MODFLOW and MT3DMS methodologies to solve the variable density groundwater flow with variable density versions of the GWF packages.
- Integrated MT3DMS Transport (IMT) process code provides the solute transport equations.
- Linked Mass Transport (LMT) is the coupling of Modflow and MT3DMS passing data between GWF or VDF and IMT processes

¹ SEAWAT-2000 [ver 4.00.05] Langevin et al., 2003
 ² MODFLOW-2000 [ver 1.18.01 06/20/2008 w/Bug fixes added thru 01/09/2012] Harbaugh et al., 2000
 ³ MT3DMS [ver 5.20 10/30/2006] Zheng and Wang, 1999; Zheng, 2006

To Meet the Objectives of the ECSM

New MODFLOW and SEAWAT Features were Needed:

Combine Groundwater Flow [GWF] processes supported in SEAWAT-2000WMD by "WMD packages" with SEAWAT's Variable Density Flow [VDF] and Integrated Mass Transport [IMT] processing

The Original "WMD Packages"

Were enhancements to MODFLOW 96 and SEAWAT-2000 code implemented as MODFLOW Packages were developed as GWF

The "WMD packages" needed for ECSM

WTL, RDF, UGEN, MDIV

Features Needed for ECSM Were the Primary Focus of the SEAWAT2022 Development

ECSM required variable density [VDF] and

solute transport [IMT]

... so these packages required SEAWAT enhancements:

➢Re-injection Drainflow (RDF)

Multi-operation Diversion (MDIV)

New Layer Property Flow Wetlands (LPF_WTL)

LPF provides a more robust approach to vertical conductance compared to BCF's VCONT approach

Focus of the SEAWAT2022 Development -Continued

Enhancements to Transport packages

To properly simulate open water conditions in wetland areas required adjusted porosity, diffusion and dispersivity equations

Due to ECSM's large domain, specialized subroutines facilitate:

- Reading ET and Recharge from binary input
- Saving concentration as monthly binary rather than daily
- Efficient management of transport source and sinks

SEAWAT2022 Code Development Phases

Phase 0 – Merge Code

SEAWAT-2000wmd

d 🛨

SEAWATv4 [2012]

SEAWAT-2012wmd

Merge Code

SEAWAT-2000WMD code was updated to be consistent with USGS SEAWATv4 2008 including the USGS bug fixes through 2012

Phase 1 – LPF Wetlands Package

SEAWAT-2012wmd

LPF Wetland Package

╇

SEAWAT-2020wmd

LPF Wetlands

Provides a Groundwater Flow [GWF] version

of the LPF wetlands package

added to SEAWAT 2012 code with WMD packages

SOUTH FLORIDA WATER MANAGEMENT DISTRICT SEAWAT Main Subroutines Called for LPF Wetlands

wtl6 2000.f:: SUBROUTINE WTL6LPFRS gwflpf1 wtl.F::SUBROUTINESGWF1LPF1S WTL Purpose: Computes Storge budget flow term. Purpose: Read the wetland input data and call SGWF1LPF1N WTL Key Logic for Wetland Package vs. LPF code: LPF uses HK instead of HY IF (LAYER.EO.1) THEN wtl6 2000.f:: SUBROUTINESGWF1LPF1N WTL New "I IF (IBND WTL.GT.0) THEN !(within the wetland boundary) Purpose: Calculate initial Vertical Conductance and Storage Terms wetland storage is handled w/ two storage capacities in the same manner as confined and unconfined aquifers, LPF uses HK instead of HY except the wetland specific yield (SYWTL) is used instead of secondary storage capacity (SC2). LPF uses LAYWET from COMMON instead of BCF IWDFLG ELSE !(Outside the wetland boundary in layer 1) (SC1 and SC2) are used. ELSE IF LAYTYP.NE.0 !(convertible) two storage capacities (SC1 And SC2) are used. gwflpf1 wtl.F::SUBROUTINE GWF1LPF1FM WTL ELSE ! (confined) a single, primary storage capacity. (SC1) Purpose: add leakage correction and storage to HCOF and RHS; and calculate conductance. gwflpf1 wtl.F::SUBROUTINESGWF1LPF1HCOND WTL New" or convertible layers, vertical and horizontal conductance is recalculated Purpose: Computes Horizontal Conductance w/ SGWF1LPF1HCOND WTL and SGWF1LPF1VCOND WTL with each LPF call Key Logic for Wetland Package vs. LPF code: vs just horizontal w/SGWF1BCF6H WTL for BCF. IF (THCK.LE. .000005) THEN ! [ifsatthickness of layer 1 wetland is very, very thin] Key Logic for Wetland Package code: CC= 0.0 ![transmissivity=0.0] IF (LAYTYP.EQ.1) THEN ![unconfined necessary for wetlands] ELSE IF (LAYER.EQ.1 .AND. IBND WTL.GT.0) THEN IF (LAYER.EQ.1 .AND. IBND WTL.GT.0) THEN IF (LAYAVG .EQ. 2) THEN Wetland leakage & storage are handled w/2 storage capacities just as confined and [UNTESTED: arithmetic mean of saturated thickness & log mean hydraulic conductivity (for unconfined aquifers unconfined aquifers, except that wetland specific yield is substituted for the secondary with gradually varying Transmissivities] storage capacity (SC2) ELSE ELSE ! [outside wetlands in unconfined layer 1] [TESTED: layavg.eq. 0 for harmonic mean & UNTESTED layavg.eq 1 for Log mean] Leakage and storage are handled with two storage capacities (SC1 and SC2) convert BCF equation CC (transmissivity) to Branch Conductance value needed by LPFHARM equation CC(J,I,KB)=(THCK1**BETA(J,I))*HK(J,I,KB)+ZTHCK*HYMUC(J,I) ELSE IF (LAYTYP.NE.0 .AND. LAYTYP.NE.1) THEN CC(J,I,KB)=CC(J,I,KB)/HK(J,I,KB) Normal LPF for LAYTYP >0 Included to simplify differences in previous code. LAYTYP .EQ. 3 w/BCF wetlands runs for layer 2 & 3 = convertible confined/unconfined gwflpf1 wtl.F::SUBROUTINESGWF1LPF1VCOND WTL New Leakage and storage are handled with two storage capacities (SC1 and SC2) Purpose: Computes Vertical Conductance ELSE IF (LAYTYPE .EQ. 0) THEN ![non-convertibleakaconfined] Key Logic for Wetland Package vs. LPF code: IF LAYER.EQ.1 .AND. IBND_WTL.GT.0 A single/primary storage capacity (SC1) is used. Calculate sat thickness in wetland cell and for cell below and then calculate vertical hydraulic conductivity CV(J,I,K)=((THCKW*.5/HYC1)+(THCK2*.5/HYC2))+(ZTHCK/VHYM)

CV(J,I,K)= DELR(J)*DELC(I) / CV(J,I,K)

Head Difference Map Comparing BCF vs. LPF Within the Wetland Boundary Showing Nearly Identical Heads

sou WAT н OR D Α = R ΜА N Α GEM D S СТ **Phase 2 – Variable Density Wetland** and "WMD packages"

Provides variable density [VDF] versions of:

- Wetland packages
- "WMD packages" needing VDF [RDF, MDIV, UGEN]

Example Code Comparisons Highlight Code for the New Subroutines for WMD Packages

Comparing pre-2020 GWF and VDF Compare pre-2020 BCF GWF1 with Compare pre-2020 LPF GWF1 with **VDF1** subroutines: **VDF1** subroutines: process for Rivers and GHB GWF1BCF6FM GWF1LPF1FM VDF1RIV6SSMDENSE VDF1GHB6SSMDENSE VDF1BCF6FM VDF1LPF1FM GWF1BCF6H VDF1BCF6H SGWF1LPF1S SGWF1LPF1S GWF1RIV6BD VDF1RIV6BD GWF1BCF6S VDF1BCF6S SGWF1LPF1F SVDF1LPF1F GWF1RIV6FM VDF1RIV6FM GWF1BCF6F VDF1BCF6F SGWF1LPF1B SVDF1LPF1B GWF1BCF6B VDF1BCF6B SGWF1LPF1HCOND SVDF1LPF1HCOND GWF1GHB6FM VDF1GHB6FM SGWF1LPF1HHARM SVDF1LPF1HHARM GWF1GHB6BD VDF1GHB6BD SGWF1LPF1HLOG SVDF1LPF1HL0G SGWF1LPF1HUNCNF SVDF1LPF1HUNCNF GWF1DRT1FM VDF1DRT1FM SGWF1LPF1VCOND SVDF1LPF1VCOND GWF1DRT1BD VDF1DRT1BD GWF1RDF6FM GWF1DRT1FM

GWF1RDF6BD

VDF1DRT1BD

Example Code Comparison

GWF1LPF1FM (Clean up DO Loops and GOTOs)	VDF1LPF1FM (Clean up DO Loops and GOTOs)
SUBROUTINE GWF1LPF1FM(HCOF,RHS,HOLD,SC1,HNEW,IBOUND,CR,CC,CV,HK, 1 HANI,VKA,BOTM,SC2,DELR,DELC,DELT,ISS,KITER,KSTP,KPER,NCOL, 2 NROW,NLAY,IOUT,WETDRY,WETFCT,IWETIT,IHDWET,HDRY,NBOTM,VKCB)	SUBROUTINE VDF1LPF1FM(HCOF,RHS,HOLD,SC1,HNEW,IBOUND,CR,CC,CV,HK, 1 HANI,VKA,BOTM,SC2,DELR,DELC,DELT,ISS,KITER,KSTP,KPER,NCOL, 2 NROW,NLAY,IOUT,WETDRY,WETFCT,IWETIT,IHDWET,HDRY,NBOTM,VKCB, 3 INVSC)
	USE VDFMODULE, ONLY: DENSEREF, PS, ELEV, HSALT, MFNADVFD
DOUBLE PRECISION HNEW	DOUBLE PRECISION HNEW, HTMP
<pre>CFOR EACH LAYER: IF CONVERTIBLE, CALCULATE CONDUCTANCES. D0 100 K=1,NLAY KK=K IF(LAYTYP(K).NE.0) THEN CALL SGWF1LPF1HCOND(HNEW,IBOUND,CR,CC,HK,HANI,DELR,DELC,BOTM, 1 NBOTM,KK,KITER,KSTP,KPER,NCOL,NROW,NLAY,IOUT,WETDRY, 2 WETFCT,IWETIT,IHDWET,HDRY) END D0 D0 K=1,NLAY KK=K IF((K.NE.NLAY) THEN If(LAYTYP(K).NE.0.OR. LAYTYP(K+1).NE.0) 1 CALL SGWF1LPF1VCOND(CV,HK,VKA,VKCB,IBOUND,BOTM,NBOTM,KK, 2 NCOL,NROW,NLAY,HNEW,DELR,DELC,IOUT) END IF</pre>	<pre>CFOR EACH LAYER: IF CONVERTIBLE, CALCULATE CONDUCTANCES. DO K=1,NLAY KK=K CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: TISE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: IF(LAYTYP(K).NE.0) IF (INVSC.GT.0.AND.KITER.EQ.1.OR. LAYTYP(K).NE.0) THEN CALL SVDF1LPF1HCOMD(HNEW,IBOUND,CR,CC,HK,HANI,DELR,DELC,BOTM, 1 NBOTM,KK,KITER,KSTP,KPER,NCOL,NROW,NLAY,IOUT,WETDRY, 2 WETFCT,IWETIT,IHDWET,HDRY,HSALT,INVSC) END IF END D0 D0 K<1,NLAY KK=K IF(K.NE.NLAY) THEN CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: THE FOLLOWING ROUTINE ALWAYS NEEDS TO BE CALLED IF VARIABLE CSEAWAT: GOLOWING NUNAY,HSALT,DELR,DELC,JOUT) IF(INVSC.EG.0. AND. (LAYTYP(K).NE.0. OR. LAYTYP(K+1).NE.0)) 2 CALL SGWFILPFIVCOND(CV,HK,VKA,VKCB,IBOUND,BOTM,NBOTM,KK, 3 NCOL,NROW,NLAY,HSALT,DELR,DELC,JOUT) END IF END DO</pre>
CSEE IF THIS LAYER IS CONVERTIBLE OR NON-CONVERTIBLE. IF(LAYTYP(K).EQ.0) THEN CNON-CONVERTIBLE LAYER, SO USE PRIMARY STORAGE DO I=1,NROW DO J=1,NCOL IF(IBOUND((),I,K).GT.0) THEN RHO=SC1(J,I,K)=TLED HCOF(J,I,K)=RHS(J,I,K)-RHO RHS(J,I,K)=RHS(J,I,K)-RHO*HOLD(J,I,K) END IF	CSEE IF THIS LAYER IS CONVERTIBLE OR NON-CONVERTIBLE. IF(LAYTYP(K).EQ.0) THEN CNON-CONVERTIBLE LAYER, SO USE PRIMARY STORAGE DO 1=1,NROW DO 3=1,NCOL IF(1BOUND(3,1,K).GT.0) THEN RHO-SC1(3,1,K)*TLED CSEAWAT: CONSERVE MASS HCOF(3,1,K)=RHS(3,1,K)-RHO*PS(3,1,K) RHS(3,1,K)=RHS(3,1,K)-RHO*PS(3,1,K)*PS(3,1,K)
END DO END DO	END IF END DO

sfwmd.gov

62

Head Difference Map GWF - VDF

Nearly identical heads are shown in areas within the wetland boundary [pale green area] as expected, since WQ was fresh in the wetland areas.

Differences in this comparison highlight coastal salinity effects on heads.

Phase 3 – LPF Wetland Transport

SEAWAT-2020mt3d

Provides solute transport processes (IMT) for Wetland packages

Implemented in new LMT subroutines

Transport Wetlands

÷

SEAWAT-2020vdf

Transport Wetlands

Code Comparisons for New Code

For example:

LMT6LPF1 vs LMT6LPF1_WTL

LMT6LPF1VD vs LMT6LPF1VD_WTL

> LMT6LPF1_WTL vs LMT6LPF1VD_WTL

Variable Density Transport Code Comparisons

LMT6LPF1VD	LMT6LPF1VD_WTL	
CCALCULATE AND SAVE SATURATED THICKNESS	CCALCULATE AND SAVE SATURATED THICKNESS	
TEXT='THKSAT'	TEXT = 'THKSAT'	
	TEXT2='THKOPENWAT'	!WTL Open Water Transport
DO K-1,NLAY	DO K=1,NLAY	
IF(LAYTYP(K).EQ.0) CYCLE	IF(LAYTYP(K).EQ.0) CYCLE	
DO I=1,NROW	DO I=1,NROW	
DO J=1,NCOL	DO J=1,NCOL	
IF(IBOUND(J,I,K).NE.0) THEN	IF(IBOUND(J,I,K).NE.0) THEN	
TMP=HNEW(J,I,K)	HHD=HNEW(J,I,K)	
	BBOT=BOTM(J,I,LBOTM(K))	!WTL
	TTOP=BOTM(J,I,LBOTM(K)-1)	!WTL
	IF(LAYTYP(K).NE.0) THEN	!WTL
	IF (HHD.LT.TTOP) TTOP=HHD	!WTL
	END IF	!WTL
	THCK=TTOP-BBOT	IWTL
	IF (THCK .LT.0) THEN	IWTL
	THCK = 0.0	IWTL
	END IF	IWTL
BUFF(J.I.K)=TMP-BOTM(J.I.LBOTM(K))	BUFF(J.I.K)=THCK	IWTL
THKLAY=BOTM(1, I, I, BOTM(K), 1)-BOTM((1, I, I, BOTM(K)))	THKLAY=BOTM(], I, LBOTM(K)-1)-BOTM(], I, LBOTM(K))	
IF(BUFF(J,I,K),GT,THKLAY) BUFF(J,I,K)=THKLAY	IF(BUFF(J.I.K).GT.THKLAY) BUFF(J.I.K)=THKLAY	
	BUEE2(1,T) = 0.0	
FND TE	END TE	
	TE((THCK GT 0 000005) and	1MT1
	8 (K. FO. 1 . AND. TBND WTI (1. T). GT. 0)) THEN	IWT
	HHD_HNEW(1 T K)	INTI
	THCK-HHD_BOTM(1 T K)	INTE
	7THCK - 0.0	11/TL
	7780TT = 80TM(1 T R)	IWIC
	IE (7780TT at UUD) 7780TT-UUD	INT.
	TF(22b011.gc.nnb) 22b011-nnb	INTL INT
	ZHCK = ZZDOTT - DOTM(J,I,K)	INTL INTI
	$\frac{11}{1000} = \frac{1000}{1000} = \frac{1000}{1000}$	INTL INTI
	$TE(TUCKA \rightarrow 0.0) TUCKA 0.0$	INTL INT
	IF(In(K1.10.00) In(K1-0.0)	INTL INT
	IF(Incki.gc.incki.ak) Incki=InckiAk	(W)L
	C nead above muck (max=5)+ sat muck thickness	11.771
	BUFF(J,I,K)= IHCKI + ZIHCK	WIL
	C head above muck	1.07
	BUFFZ(J, I) = THCKI	IWIL
510.00	END IF	
END DO	END DO	
END DO	END DO	
END DO	END DO	
C SAVE THE CONTENTS OF THE DIFFER		
CSAVE THE CURTERILS OF THE BUFFER	CSAVE THE CONTENTS OF THE BUFFER	
	IF (ILMIFMI.EQ.0) THEN	
IF (IOUT.EQ.INUHF) THEN	IF (IOUT.EQ.INUHF) THEN	
C MKTIF(TODI) BOFF	C MKTIF(TODI) ROFF	
DH=BUFF	DH=BUFF	
	OW=BUFF2	!WIL Open Water Transport
ELSE	ELSE	

Transport Concentrations Vary Over 32 Years Show Noticable Change in the Wetland Areas as Circled

Phase 4 – Transport for "WMD packages" and Adjustments for Open Water Wetlands

Integrate solute transport IMT processes for WMD packages RDF, MDIV, UGEN

Porosity, Diffusion, and Dispersion to support OW Wetlands

Layer 0 Porosity Affects Most of the Transport Code

IMT Subroutine	Purpose	IMT Subroutine	Purpose
Blue indicates cod	e with Adjustments for Open water Green indicates New subroutine		
IMT1BTN5DF	Dimension and simulation options	IMT1ADV5FM	Formulate Matrix Coefficients
IMT1BTN5AL	Allocate Arrays	IMT1ADV5BD	Calculate Budget of Constant Concentration
IMT1BTN5RP	Read and Prepare (Constant for Simulation)	IMT1T0B5AL	Allocate Space for Transport Observation Package
IMT1BTN5ST	Stress Timing	IMT1T0B5RP	Read Input data for TOB package
IMT1BTN5AD	Advance Timestep and set next step size	IMT1DSP5AL	Allocate Space for Dispersivity arrays
IMT1BTN5SV	Formulate and Solve Transport Equation	IMT1DSP5RP	Reads Dispersivity & Ratios as Well as Diffusion info
IMT1BTN5FM	Formulate Matrix Coefficients	IMT1DSP50W	Calculates open water adjusted longitudinal dispersion & diffusion
IMT1BTN5BD	Calculate Mass Budgets	IMT1DSP5CF	Calculates components of DISP using DARCY w/porosity
IMT1BTN5OT	Save Outputs	IMT1DSP5FM	Formulate Matrix Coefficients for Dispersivity
IMT1FMI5AL	IF BTN Determine Flow Components Active	IMT1DSP5BD	Calculates Mass Budget for Constant Concentration
IMT1FMI5RP2A	Initialize SS array to 0.0	IMT1SSM5AL	Allocate space for Source and Sink Mixing
IMT1FMI5AL	Second call for Allocate Arrays	IMT1SSM5RP	Read & Prepare concentration of source and sinks each SP
IMT1FMI5RP1	Calc Sat Thickness, fluxes, and flow rates	IMT1SSM5FM	Formulate Matrix Coefficients
IMT1FMI5RP2	Read and process SS terms	IMT1SSM5BD	Calculate Budgets (Mass) all source & sinks terms
IMT1ADV5AL	Allocate Space for Advection Array	IMT1SSM5OT	Saves info for multi-node wells
IMT1ADV5RP	Reads Advection Input	IMT1RCT5AL	Allocate Space for chemical reaction arrays
IMT1ADV5SV	Calculates concentration at intermediate time level due to advection	IMT1RCT5RP	Read & Prepare input for reactions
SADV5M	with the mixed Eulerian-Lagrangian schemes.	SRCT5R	Calculates retardation factor and concentration of sorbed
VRK4		IMT1RCT5CF	Update Reaction Coefficients
SADV5B	Several subroutines and functions, specific to IMT1ADV5SV, required	SRCT5R	Calculates retardation factor and concentration of sorbed
VRK4	modifications to support appropriate handling of the OW and porosity	IMT1RCT5FM	Formulate Matrix Coefficients
PARMGR	adjustments.	IMT1RCT5BD	Calculate Mass Budget associated with reactions.
GENPTR		SRCT5R	Calculates retardation factor and concentration of sorbed
GENPTN		IMT1GCG5AL	Allocate Storage for Solver
SADV5Q		IMT1GCG5RP	Read gcg input for solver package
SADV5U		IMT1GCG5AP	Generalized Conjugate Gradient Solver
CFACE			

Porosity for Layer 0

*DELR(J)*DELC(I)*(DH(J,I,K)+L0)*PRSITY(J,I,K)

```
DIMENSION DELR(NCOL),DELC(NROW),DH(NCOL,NROW,NLAY),
& OW(NCOL,NROW),RHOB(NCOL,NROW,NLAY),
& SRCONC(NCOL,NROW,NLAY,NCOMP),PRSITY(NCOL,NROW,1-IWTL:NLAY)
IF (IWTL.EQ.1 .and. K.eq.1) THEN
CKAR-2021 ! Recalc Layer 1 Porosity as weighted Ratio of
CKAR-2021 ! Open Water to Saturated Muck Thickness
PRSITY(J,I,1) = (PRSITY(J,I,0)*OW(J,I)/DZ(J,I,1))+
& (PRSITYL1(J,I)*(1-(OW(J,I)/DZ(J,I,1))))
L0=0.0
IF(K.EQ.1) L0=OW(J,I)
DMSTRG=(CNEW(J,I,K,ICOMP)-COLD(J,I,K,ICOMP))
```

&

sfwmd.gov

70

SOUTH FLORIDA WATER MANAGEMENT DISTRICT Specialized Transport Handling for WMD Packages

Transport source WQ defaults to reference WQ for SEAWAT

Source and Sink WQ may be defined using the SSM or AUX parameters

RDF and MDIV now use source WQ to mix with sink WQ

Concentrations Before and After Transport Enhancement to Use Source WQ

Transient WQ Incorporating All WMD Packages with Transport [Initial] [year 32] [year 64]

Example Problems with SEAWAT2022

20 example cases or problems were run with SEAWATv4 and SEAWAT2022

Heads and Concentrations were post processed, compared and found to show identical in most cases or virtually no differences
Box
saltlake

Example problems and cases:

Box	saltlake
case1	
case2	case1
Henry	rotatation
classic case1	symmetric
classic case2	asymmetric
VDF no Trans	swtv4_ex
VDF uncpl Trans	case1
VDF DualID Trans	case2
age simulation	case3
Elder	case4
case1	case5
hydrocoin	case6
case1	case7

Henry Problem Comparison

Elder Problem Comparison

Conclusions

- SEAWAT2022 created using SEAWAT2000 and existing WMD MODFLOW packages to achieve desired functionality
- Phased approach to code modifications ensured functionality and performance at each step
- Using existing MODFLOW model over portion of ECSM model domain, favorably compared performance of new LPF wetlands package (Phase 1) and VDF package (Phase 2)
- Successfully demonstrated code's ability to account for water quality changes over time
- Published example problems replicated to demonstrate SEAWAT2022 achieves virtually identical performance compared to SEAWAT2000
- SEAWAT2022 has therefore been demonstrated to function as designed and is the basis for use in ECSM – documentation to be provided to Panel via webboard

ѕоитн FLORIDA WATER MANAGEMENT DISTRICT

Panel Discussion

Public Comment

Boca Chita, Biscayne Bay

- ➢ If you are participating via <u>Zoom</u>:
 - ➤Use the Raise Hand feature
- ➢ If you are participating via <u>phone</u>:
 - ⊁*9 raises hand
 - ≻*6 mutes/unmutes your line
- When you are called on, please state your full name and affiliation prior to providing comments.

ET-Recharge Program and Return Flow

Yirgalem Assegid, Ph.D. Alicia Magloire Anushi Obeysekera, E.I.T.

ET-Recharge Program

- The ET-Recharge program is a pre-processing tool that estimates Evapotranspiration (ET) and Recharge that will be used as input into the groundwater model (Restrepo and Giddings, 1994)
- The ET-Recharge program incorporates the Agricultural Field-Scale Irrigation Requirement Simulation (AFSIRS; Smajstrla, 1990) method and the Curve Number Method (NRCS) to estimate runoff

General Information on AFSIRS

- AFSIRS is a root-zone daily water balance model
- Uses daily rainfall and ET, soil type, crop coefficients, irrigation types/efficiencies
- Calculates drainage (DR) and ET deficit from root zone (NIR)
- Drainage (DR) term is the recharge
- Non-irrigated areas
 - Total ET demand PET=RET*Kc (Kc=Crop Coeff.)
 - Potential groundwater ET=PET-unsaturated zone ET
- Irrigated areas
 - Assumes ET demand is met by the irrigation
- AFSIRS is not applied to saturated conditions, i.e. lakes, inundated wetlands, and rivers. In these areas
 - Recharge=Rainfall
 - ➤ ET=PET

Incorporation of Return Flow into ECSM

- Return flow to the Surficial Aquifer System (SAS), as applied to ECSM, is herein defined as anthropogenic-derived water being re-introduced to the saturated zone of the aquifer
- The primary mechanisms related to this process are:
 - 1) excess irrigation from agricultural, golf course and landscaping needs
 - 2) discharge from septic tank system drain fields
 - 3) disposal of treated wastewater to wetlands

ECSM Implementation of Return Flow for Irrigation Needs

- AFSIRS is used to calculate saturated zone ET and recharge rates for the model as well as irrigation demands that are then implemented into the model via the well file
- AFSIRS allows the user to specify the efficiency of the irrigation method, thereby allowing for the calculation of how much water re-enters the top model layer as return flow for irrigation
- As land development occurs through the calibration period, crop types, land use type and other conditions change, and irrigation demands are recalculated to account for this
- > Other changes considered include:
 - Greater use of reclaimed water for landscape irrigation in the later part of the calibration period
 - Increased conversion of residential, domestic self-supply wells to public supply for irrigation associated with urbanization

ECSM Implementation of Return Flow for Residential Septic Tanks

Some septic tank systems still occur within the model domain

Return flow for septic is calculated using the population at each land use type, which is then multiplied by the indoor per capita use and estimated percent fraction returned to the unsaturated zone

ECSM Implementation of Return Flow for Supplemented Surface Water System

The final form of return flow implemented in the model is that of reclaimed water applied to surface water bodies. Some examples include lake systems and wetland restoration projects being supplied water from wastewater treatment plants or from another alternative water supply source like the Floridan aquifer.

> Depending upon the size and type, these systems will be simulated using:

- The standard river and drain cell approach with the budget calculated to ensure correct seepage rates if the system is or acting like a canal recharge system
- Large created wetland systems will be simulated using the wetlands package with water inflow into the system coming from observed values and as an outside source
- Smaller lake systems are simulated by adjusting the layer 1 hydraulic conductivity at the site and applying the observed flow volumes from the outside source

QA/QC Check for Return Flows

- QA/QC Check: All return flow volumes calculated by the methods discussed above will be summed up at the utility service area level and compared back against the difference between the Utility's treated public supply flow and subsequent waste-water return flows to determine if reasonable
- The primary calibration parameters will be the assumption of the areas being irrigated with public supply and the volume of irrigation and other forms of reuse simulated compared to the observed waste-water reuse plant flows

Land Use

- Model Calibration will use 6 land use maps
 - 1988 map for 01/01/1985 12/31/1993
 1995 map for 01/01/1994 12/31/1997
 1999 map for 01/01/1998 12/31/2002
 2004 map for 01/01/2003 12/31/2006
 2009 map for 01/01/2007 12/31/2012
 2014 map for 01/01/2013 12/31/2016

2014 Land Use

Rainfall

- District's rainfall dataset
- Spatial Variation of Rainfall for 2001 across ECSM
- Transient calibration period uses rainfall from 1985 – 2016
- Data derived from gauged values (1965 April 2002); uses TIN-10 interpolation
- NEXRAD data (May 2002 December 2016); averages values to get gridded values
- Nearest neighbor was used to proceed from Water Management Model (2 mi X 2 mi) to ECSM (1,000 ft X 1,000 ft)
- South of Key Largo, rain gage data was used with Thiessen polygons and Inverse Distance Weighting interpolation

Reference ET (ET_{REF})

District's Reference ET dataset

- Reference crop is green grass with 0.12 m height, actively growing, well-watered, completely shading the ground, fixed surface resistance of 70 ^s/_m and albedo of 0.23
- Based on two meteorological datasets
 - NARR & Hydro51

- Utilized Multiquad Interpolation
- ET_{REF} computed using Penman-Monteith Equation
- Nearest neighbor was used to proceed from Water Management Model (2 mi X 2 mi) to ECSM (1,000 ft X 1,000 ft)

SOU WΑ DA R MANA GΕ СТ Т FL D s н 0 R т = М Ξ Ν R **Monthly Distribution of Rainfall and Reference ET**

92

SOUT н FLORI DA W A S RICT R ΜA ΝΑ G Π Ν DI Т Т Μ Π п **Annual Distribution of Rainfall and Reference ET**

Input Data Sets

Anushi Obeysekera, E.I.T.

River and Drain Coverage

S O U T H FLORIDA WATER MANAGEMENT DISTRICT

Wetland Coverage

SOUTH MAN ІСТ FL OR WΑ R DA т = Α GΕ M N DI S R

Public Supply Demands

Initial Head Arrays

Tidal Boundary Condition

Development of Initial Water Quality Arrays

Sources

- ➢SFWMD's Regulatory Database
- ▷DBHYDRO
- USACE Chloride data from USGS wells
- FPL Turkey Point water quality data
- FIU database for Shark River Slough and Florida Bay
- ➤USGS reports
- C-51 Phase 1 Studies
- SFWMD WCA-2A Studies

Strategy: Convert all data to a common parameter (TDS)

Conversion: Chloride to Specific Conversion: Chloride to Specific Conductance

- ➤ 3658 historical data pairs across the model domain in various layers
- > The data pairs were separated into 37 bins (i.e., groupings of similar values)
- >Average chloride and average specific conductance value was taken for each bin
- Averages were used to develop the regression lines
- Based on the data, it was determined that one regression equation should not be utilized for the entire range of chlorides. Regression equations were developed for chlorides less than 250 mg/L and between 250 mg/L and 8,300 mg/L
- >Chlorides greater than 8,300 mg/L use a conversion factor straight to TDS

Conversion: Specific Conductance to TDS

≥2,954 historical data pairs across the model domain in various layers

Specific Conductance to TDS ratio was calculated using historical data

The data pairs were separated into bins

Range of specific conductance values were developed for each bin and the average ratio was calculated for each bin

Average ratios were the conversion factors utilized for converting specific conductance to TDS

Equation Verification

FPL Turkey Point site has historical chlorides, specific conductivity and TDS data from 2011 through 2019

Data ranges from 12 mg/L – 39,800 mg/L (chlorides)

455 us/cm – 86,709 us/cm (specific conductance) 210 mg/L – 71,900 mg/L (TDS)

Historical Water Management District

Historical Water Quality Data Points

Initial Water Quality Array (1985)

Model Calibration Plan

Anushi Obeysekera, E.I.T.

Proposed Calibration Procedure

Calibration of the ECSM will be undertaken with a two-phased approach:

- Phase I: manual calibration with initial sensitivity approach
- > Phase II: utilizing PEST to evaluate final model performance
- Phase I Primary Calibration

Calibration parameters for water levels

Both static and dynamic parameters are included in the process and examples include aquifer horizonal and vertical hydraulic conductivities; variations in recharge and ET rates; pumpage distribution by source and wellfield; and other variables depending upon the results of the preliminary sensitivity runs
Proposed Calibration Procedure -Continued

Calibration parameters for water quality

In addition to the parameters used to calibrate water levels, additional parameters are horizonal and transverse dispersivity values, boundary conditions including tidal variations, the sink/source mixing package and initial water quality arrays to account for the trapped connate water beneath the Everglades Agricultural Areas, Water Conservation Areas, and Lake Okeechobee

Calibration parameters for structure flows:

control elevations of secondary and tertiary canals; river and drain conductance; diversion and RDF operational rules for water movement; curve numbers and the Muskingum delay function coefficients

Phase II - Global Sensitivity Analysis

Use of PEST to run a global sensitivity analysis via Method of Morris to determine if the results of manual calibration result in a well-calibrated model

Monitoring Locations

Proposed Water Level Calibration Criteria

➤Mean error (ME): ±1 ft

➢Mean absolute error (MAE): <1 ft</p>

> 50% of wells with MAE < 1 ft

>80% of wells with MAE < 1.5 ft

Proposed Water Quality Calibration Criteria

Water quality calibration criteria determined by salinity, as set forth in Jacobs et al. (2011), based on averaged monthly values

	Fresh to Bra	ickish Water	Moderately Saline	Saline Water
Total Dissolved Solids (mg/L)	0-4,000	4,000 - 10,000	10,000 - 18,000	>18,000
Calibration Error Band (mg/L)	±500	±750	±3,000	±4,000

Calibration Target: 80% of all water quality monitor wells will simulate total dissolved solids concentration within its individual calibration error band

Jacobs, B., M. Stewart, R. Therrien, and C. Zheng, 2011. Peer Review Report – East Coast Floridan Aquifer System Model Phase II Project, South Florida Water Management District, West Palm Beach, FL.

Proposed Water Quality Calibration Criteria

		Fresh to Bra	Moderately Saline	Saline Water		
Total Dissolved Solids (mg/L)	0 – 1,000	1,000 — 2,000	2,000 – 4,000	4,000 — 10,000	10,000 — 18,000	>18,000
Calibration Error Band (mg/L)	±500	±750	±1,000	±2,000	±3,000	±4,000

Calibration Target: 80% of all water quality monitor wells will simulate total dissolved solids concentration within its individual calibration error band

Proposed Structure Flow Calibration Criteria

Coefficient of Determination: $R^2 > 0.4$

➤Nash – Sutcliffe: NS > 0.4

➢ Deviation of Volume: DV + 15%

<u>NOTE:</u> These criteria were successfully used for the groundwater model associated with CERP Loxahatchee River Restoration Project

Description

Coefficient of determination measures the goodness of fit. Nash-Sutcliffe is a model efficiency coefficient that indicates the predictive power of models.

Deviation of volume measures the difference between historical and simulated flow volumes. Positive values indicate that the model is underpredicting, negative values indicate that the model is overpredicting.

Soft Calibration Metrics

- ➤Water Budgets
- Transient model response, evaluating wet vs. dry season statistics
- Reviewing direction and quantity of flux across model boundaries
- Reviewing historical saltwater interface maps to ensure the model spatially simulates position of saltwater front

SOUTH FL O R DA w DIS СТ А R ΜА Ν Α GE M Ν т R

Path Forward

Panel Discussion

Public Comment

Boca Chita, Biscayne Bay

- ➢ If you are participating via <u>Zoom</u>:
 - ➤Use the Raise Hand feature
- ➢ If you are participating via <u>phone</u>:
 - ≻*9 raises hand
 - ≻*6 mutes/unmutes your line
- When you are called on, please state your full name and affiliation prior to providing comments.

