

Uditha Bandara, Ph.D., P.E.
Section Leader, Groundwater Modeling
July 1, 2020

Agenda

- > Model objectives and overview
- Model calibration
- Model application
 - 2014 reference condition and 2040 future condition
 - Head difference maps (2014 and 2040)
 - Wetland impact analysis
 - Maximum developable limit (MDL) analysis
 - Velocity vectors analysis
- > Conclusions

Model Objectives

> Primary objective: Support the Lower West Coast (LWC) water supply plan

- Tool will be used to evaluate if current and future groundwater withdrawals are sustainable
 - Identify areas where there is the potential for cumulative water use withdrawals to cause harm to wetlands and ground water resources
 - Identify potential for saltwater intrusion issues in coastal aquifers

Model Overview

- Includes all of Lee, Collier, and Hendry counties and portions of Charlotte, Glades, and Monroe counties
- Western boundary coincides with the Gulf of Mexico and Peace River, including Pine Island and Sanibel Island
- > Eastern boundary aligned with District's primary canal (north-south) and Lake Okeechobee
- > Southern boundary coincides with Lostman's River and Big Lostman's Bay tidal boundaries
- > Northern boundary specified head boundary, reasonable distance away from areas of interest

Model Overview (cont.)

- First SFWMD model for the surficial (SAS) and intermediate (IAS) aquifer systems for LWC planning region
- Used updated hydrostratigraphy for model layering
 - Recent SFWMD publication by Geddes et al. (2015)
- > MODFLOW based, uniform grid size of 1,000 ft × 1,000 ft
- Monthly stress periods (time varying data input interval)
- Reclaimed water incorporated through golf course and landscape irrigation return flows
- Calibration period: 1999-2012, verification period 2013-2014
- Calibrated for surface water flows/levels and groundwater levels
- Independent scientific peer review
 - Concurrent with model development
 - Panel: 3 experts in South Florida hydrogeology and groundwater modeling

Model Layers

Surface Water Flow Calibration Summary

- > Strong hydraulic connection between surface water and SAS in the LWC
- > Ensure surface flows and stages are reasonable as they impact groundwater recharge
- Simple surface water and unsaturated zone model integrated with MODFLOW through evapotranspiration and recharge
- Calibrated simulated flows to observed structure flows at two major watersheds

Statistics		Watershed			
Statistics	Criteria East Ca		West Caloosahatchee		
Deviation of Volume (DV)	< 15%	-9.30%	0.54%		
Nash-Sutcliffe (NS)	> 0.5	0.55	0.54		
R Squared (R2)	> 0.5	0.56	0.55		

Calibration Criteria Established

- ❖ Peer-review recommendation
- Previous models

Green font indicates compliance with all calibration criteria

Surface Water (Wetland) Level Calibration Summary

- Overland flow simulation wetlands package
 - 60 target wetland gauges

Green font indicates compliance with all calibration criteria

Calibration Period: 1999 - 2012

LWCSIM	Criteria	ft or %
Residual Mean	+/- 1 foot	-0.7
Error Standard Dev	< 5 ft	1.79
Absolute Residual Mean (MAE)	< 5 ft	1.64
RMS Error	< 5 ft	1.91
Minimum Residual		-9.12
Maximum Residual		6.45
Number of Observation Points		60
Percentage with MAE < 2.5 ft	> 50%	85
Percentage with MAE < 5.0 ft	> 80%	98
Percentage with R2 > 0.4	> 60%	63
Percentage with TNSE > 0	> 60%	63

Calibration criteria was based on previous models and peer-review recommendation

Groundwater Level Calibration Summary

> 441 target groundwater monitoring

wells

Green font indicates compliance with all calibration criteria

Calibration period 1999 - 2012

Chatistics	Cuitouio	Aquifer					
Statistics	Criteria	WTA	LTA	S2	S1	МН	
Residual Mean	+/- 1 foot	-0.34	0.51	0.7	0.98	-0.85	
Error Standard Dev	< 5 feet	2.27	2.97	3.22	1.8	3.21	
Absolute Residual Mean (MAE)	< 5 feet	1.76	2.44	2.38	1.68	2.55	
RMS Error	< 5 feet	2.29	2.99	3.24	2.01	3.25	
Minimum Residual		-9.12	-4.12	-9.91	-3.28	-7.38	
Maximum Residual		6.45	9.35	5.27	3.78	4.39	
Number of Observation Points		297	72	29	18	25	
Percentage with MAE < 2.5 ft	> 50%	73	61	62	72	56	
Percentage with MAE < 5.0 ft	>80%	97	96	90	100	88	
Percentage with R2 > 0.4	> 60%	75	81	76	83	64	
Percentage with TNSE > 0	> 60%	72	85	83	94	64	

Calibration criteria was based on previous models and peer-review recommendation

Model Application

- > Reference condition (2014) and future condition (2040) runs
 - Similar simulation period to calibration run (16 years)
 - Similar climatic conditions to calibration run
 - New pumping values

sfwmd_gov

	2014	2040
Туре	Method	Method
Public Water Supply (PWS)	Reported	Projected
Agricultural (AG)	Estimated*	Projected
Recreational (REC)	Estimated*	Projected
Domestic Self Supplied (DSS)	Estimated**	Projected
Commercial-Industrial (CI)	Permitted	Permitted

Increased demands were assigned to existing wells for PWS, added additional wells for AG and REC within the permit boundary, and used locations identified in population projections for DSS

^{*}AFSIRS = Agricultural Field Scale Irrigation Requirement Simulation

^{**}County Level Per Capita Use

Limitation in 2040 Simulation

- > Simulated demands are "instant on"
- Demands do not include annual growth
- Results from the 2040 simulation are considered conservative

Regional Model Limitations

- > Heterogeneity
 - Regional model (1,000 ft \times 1,000 ft cell) may not capture local variability in aquifer properties or responses at individual wells
- Multiple wells in a single model cell
 - Model aggregates all withdrawals at the center of the model cell
 - Tends to exaggerate water level drawdowns
 - Results are conservative
- Regional model results from simulations should be used as an overall planning tool and results should not be taken as absolutes

Pumping Wells in Model

Pumped Volumes by Aquifer (2014)

Total Pumped = 606 mgd

WTA: Water Table aquifer LTA: Lower Tamiami aquifer

SSA: Sandstone aquifer

MHA: Mid-Hawthorn aquifer

Largest Public Water Supply Permits in SAS/IAS

Lee			Projected	
	Current	2014	2040	
1 2	Allocation	Demand	Demand	2040 - 2014
Permittee	MGD	MGD	MGD	DIFF MGD
Lee Co. Util.Corkscrew/Green Meadows/Olga	34.27	13.74	16.24	2.50
Bonita Springs Utilities	5.74	3.53	5.48	1.95
FGUA -Lehigh Acres	3.15	2.06	3.46 *	1.40
Citrus Park RV Resort	0.23	0.19	0.24 *	0.05
Lee County Utilities - Pinewoods	7.36	1.76	1.80	0.04
FGUA – Lake Fairways	0.101	0.10	0.10	0.00
Collier				
Naples, City of – Utility Department	19.42	14.13	20.22 +	6.09
Collier County - N Regional, S Regional	53.5	23.77	25.80	2.03
Marco Island Utilities	13.16	1.85	3.62	1.76
Ave Maria Utility Company	1.16	0.30	2.01 *	1.71
Collier Golden Gate (fka FGUA)	2.5	1.64	0.00	-1.64
Immokalee Water & Sewer District	4.15	1.93	2.41	0.48
Collier County (fka Orange Tree)	0.65	0.42	0.87 *	0.45
Everglades City, City of	0.3	0.16	0.27	0.11
Port of the Islands CID	0.55	0.22	0.25	0.03
Hendry				
LaBelle, City of	1.06	0.36	0.01	-0.35
Port LaBelle Utility System	0.53	0.54	0.53	-0.01
Charlotte				
Town and Country Utilities Company	0.78	0.00	0.78	0.78
Charlotte Correctional	0.12	0.10	0.10	0.00

^{*} Indicates a modeled demand over the current permitted allocation; however, it is not quaranteed to be permitted by SFWMD Water Use Bureau

Largest Agricultural Permits

Charlotte			Projected	
	Allocation	2014 Demand	2040 Demand	DIFF (2040-2014
Permittee	mgd	mgd	mgd	mgd
Babcock Ranch	8.91	8.07	8.76	0.69
Collier				
Corkscrew Citrus	13.78	12.06	9.33	-2.73
Silver Strand III	8.05	5.07	4.12	-0.95
Ranch One Coop	9.36	7.30	8.01	0.71
Silver Strand North	11.48	11.06	10.38	-0.68
Highlands Citrus	7.70	4.32	3.74	-0.58
Harker Farm	12.16	10.88	10.35	-0.53
Gator Slough	16.25	13.65	14.17	0.52
Shaggy Cypress	13.43	5.40	4.92	-0.48
Silver Strand I V	6.06	6.00	5.65	-0.35
Hogan Island	10.52	5.09	5.43	0,34
Camp Keais Ag Dev	16.63	5.60	5.32	-0.28
Gopher Ridge Citrus	10.35	6.89	6.89	0.00
Hendry				
lico Hill Grade Combin	10.45	5.25	5.63	0.38
McDaniel Ranch	28.25	22.60	22.83	0.23
Devil's Garden South	7.64	6.01	6.07	0.06
Lee				
Cooperative Three Inc	7.54	1.81	1.69	-0.12

Head Difference: Water Table Aquifer

Head Difference: Lower Tamiami Aquifer

Head Difference: Sandstone-Clastic Aquifer

Head Difference: Sandstone-Carbonate Aquifer

Head Difference: Mid-Hawthorn Aquifer

Pumps Off Heads Minus Pumps On Heads

> Purpose

 To identify potential wetland areas that can be adversely affected by cumulative water use withdrawals

> Limitations

- Model calibrated to boundary conditions with pumping occurring, not to extreme condition of no pumps
- Effects of drainage and developments also negatively impact wetlands, but that is not part of this analysis

Wetland Impact Analysis

screening criteria

> Method

- Use pumps off runs for 2014 reference condition and 2040 future condition and overlay the 2014 wetland land use
- Identify wetland areas with a potential <u>1 ft</u> or greater of additional drawdown in Water Table Aquifer
- Note: Red areas are areas with 1 ft or greater of additional drawdown underlain by wetlands

 Areas exceeding

Maximum Developable Limit (MDL) Analysis

- MDLs are part of Minimum Flow Level (MFL) prevention strategy that prevent harmful withdrawals from the following aquifers:
 - Lower Tamiami
 - Sandstone
 - Mid-Hawthorn
- ➤ MDLs prohibit water withdrawals that lower the water levels less than 20 ft above the top of the uppermost geologic strata of the aquifer at any point during a 1-in-10 year* drought condition

Sandstone Aquifer MDL Example

*1-in-10 drought year for LWC Planning Area for the period 1999-2012: 2007

2014 Lower Tamiami Aquifer MDL Analysis

> Procedure

- 1. Create raster surfaces of LTA top and simulated 1-in-10 condition LTA head (May 2007)
- 2. Remove areas where LTA is absent or very thin
- 3. Get the difference raster (LTA simulated head minus LTA top)
- 4. Determine the area of potential violation

(LTA simulated head – LTA top)< 20 ft

2014 RC Lower Tamiami MDL Analysis (cont.)

- Model simulated impacted areas have no confinement between Lower Tamiami and Water Table aquifers
 - Defining aquifer and MDL is difficult
- Monitor well data indicate that MDL was not violated during this period
- Associated with agricultural withdrawals
- Agricultural demands simulated with AFSIRS estimated due to absence of metered data
- What was actually pumped may differ from AFSIRS

LTA MDL-Im	pacted AG Permits	From Permit	From Model	From Model		
Permit ID	Name	Permitted Allocation MGD	2014 Demand MGD	2040 Demand MGD	Model Layer	
11-00262-W	Gator Slough	16.25	13.65	14.17	3,5,7	
11-00094-W	Highlands Citrus Grove	7.70	4.32	3.74	1,3,5,7	
36-00167-W	Coop Three Inc	7.54	1.81	1.69	1,3,5,7	
36-00077-W	Corkscrew Grove	5.28	0.58	0.58	1,3,5,7	
36-00201-W	Coral Creek Grove	0.80	0.21	0.47	1,3,5	

AFSIRS = Agricultural Field Scale Irrigation Requirement Simulation

2014 RC Sandstone Aquifer MDL Analysis

Velocity Vector Analysis

- > LWCSIM is not a density-dependent model
 - it cannot model saltwater intrusion
 - it cannot simulate salinity effects of sea level rise

- Velocity vector direction can be an indication of movement of the saltwater interface
 - Interface positions are plotted as a reference to the wellfield locations only

Saltwater Interface & Public Water Supply Utilities

Focus on public water supply utilities vulnerable to saltwater intrusion due to close proximity to the saltwater interface

Saltwater Interface (250 mg/L)

_ 2009

WTA - 2014

— 2019

- 2009

LTA - 2014

— 2019

- 2009

SSA - 2014

— 2019

Bonita Springs – Lower Tamiami Aquifer

Permittee	Aquifer	2014 (MGD)	2040 (MGD)	Increase
Bonita Springs	Lower Tamiami Aquifer	3.53	5.48	1.95
•				

- > 2014: Direction of velocity vectors: towards the saltwater interface
- > 2040: Conditions are almost the same

Saltwater Interface (LTA)

- 2009
- **-** 2014
- **—** 2019

Velocity vectors in every model cell Vector size proportional to velocity

Golden Gate – Lower Tamiami Aquifer

Permittee	Aquifer	2014 (MGD)	2040 (MGD)	Increase
Golden Gate	Lower Tamiami Aquifer	16.06	16.80	0.74

- > 2014: Direction of velocity vectors: towards the saltwater interface
- 2040: Conditions are almost the same

Saltwater Interface (LTA)

- 2009
- - 2014
- **-** 2019

Velocity vectors in every model cell Vector size proportional to velocity

City of Naples (Coastal) – Lower Tamiami Aquifer

Permit No	Permittee	Aquifer	2014 (MGD)	2040 (MGD)	Increase	À
11-00017-W	City of Naples	Lower Tamiami Aquifer	3.75	3.78	0.03	

- > 2014: Direction of velocity vectors: towards the saltwater interface
- 2040: Conditions are almost the same

Saltwater Interface (LTA)

- 2009
- - 2014
- **2019**

Velocity vectors in every model cell Vector size proportional to velocity Maximum vector length = 2,000 ft

Lee County Utilities – Sandstone Aquifer (Clastic)

Permittee	Aquifer	2014 (MGD)	2040 (MGD)	Increase
Lee Co Utilities	Sandstone Aquifer	8.45	9.24	0.79

> 2014: No significant movement near saltwater interface

> 2040: Conditions are almost the same

Saltwater Interface (SSA)

2009

- 2014

— 2019

Velocity vectors in every model cell Vector size proportional to velocity

Lee County Utilities - Sandstone Aquifer (Carbonate)

Permittee	Aquifer	2014 (MGD)	2040 (MGD)	Increase
Lee Co Utilities	Sandstone Aquifer	8.45	9.24	0.79

Saltwater Interface (SSA)

2009

20142019

Upward

Downward

Velocity vectors in every model cell Vector size proportional to velocity

➤ 2014: Direction of velocity vectors towards the wellfield from the saltwater interface

➤ 2040: Slight increase in size of vectors

Modeling Conclusions

- LWCSIM regional, calibrated, peer-reviewed model for the SAS/IAS in the Lower West Coast planning area
- Model indicates that 2040 demands can be met without undue impacts to existing groundwater resources and the natural system
 - Water levels rebounded in Cape Coral area of Mid-Hawthorn aquifer and southeastern Hendry County of Water Table, Lower Tamiami, and Sandstone aquifers due to decline in projected pumping
- Wetland analysis (pumps off scenarios)
 - Model calibrated to boundary conditions with pumping occurring, not to extreme condition of no pumps
 - Drainage and developments were not considered in this analysis
 - Some increases in wetland acreage associated with increase of 1 ft or more drawdown with 2040 demands
 - Water level rebounds in southeastern Hendry County, reduced current impacts in the future

Modeling Conclusions (cont.)

- > MDL analysis
 - Limitation: Aquifer top elevations are interpolated values and may have a ±5 ft error
 - Limitation: Agriculture pumping rates were estimated using AFSIRS due to a lack of metered data
 - Lower Tamiami aquifer: Potentially vulnerable area has no confinement between Lower Tamiami and Water Table aquifers, makes interpretation and MDL analysis difficult (i.e., difficult to define the aquifer)
 - Monitor wells indicated MDL was not violated in 1-in-10 drought condition in May 2007
 - Sandstone aquifer: Potentially vulnerable area has no tight confinement between Sandstone and Lower Tamiami aquifers, makes interpretation and MDL analysis difficult (i.e., difficult to define the aquifer)
 - Decline in future demands and no potential growth in vulnerable area indicate the MDL violation is unlikely in the future
 - Mid Hawthorn aquifer: Model did not show any violation
 - Close attention needs to be paid to potentially vulnerable areas in LTA and SSA in the future

Modeling Conclusions (cont.)

- > Saltwater intrusion analysis
 - LWCSIM is not a density-dependent model but potentially vulnerable areas for <u>lateral intrusion</u> can be identified using freshwater velocity vectors
 - Velocity vectors indicate no major <u>lateral intrusion</u> issues under current or proposed future conditions

Modeling Team

- > Robert Earle, CGWP
- > David Butler, P.G.
- > Yirgalem Assegid, Ph.D.
- ➤ Michael Parrish, Ph.D., P.E.
- > Anushi Obeysekera, E.I.T.
- Kevin Rodberg
- ➤ Uditha Bandara, Ph.D., P.E.

Questions?

Model Layer Structure

Based on APT/SC data Based on SS PEST Calib \rightarrow (127.149 to -7.881 ft ngvd29) Topo NGVD29 (Laver Surface elevation range ft ngvd29) Sy = 0.3Water Table Aquifer (WTA) Por = 0.25**Surficial Aquifer** Ss range = 3.3e-6 - 0.257 Avg = 0.007(51 4663 to -208 972 ft ngvd29) Sy = 0.3 Ss = 0.00002[0.061 - 16] [0.118 - 36] <u> Tamiami Confining Unit (TCU)</u> (50.7077 to -212.318ft ngvd29) Sy = 0.3Por = 0.25Lower Tamiami Aquifer (LTA) [29.7 - 12000] [0.53 - 17,300] Ss range = 1e-5 - 0.091(50.7077 to -214.814 ft ngvd29) IT RASE Upper Hawthorn Confining Unit (H1) Sv = 0.3 Ss = 0.00003Por = 0.05 (5.017 to -261.87 ft ngvd29) Sy = 0.3Intermediate Aquifer Sandstone Aquifer – Clastic Zone (S2) Por = 0.25Ss range = 2.5e-6 - 0.019 Avg = 1.1e-3S2 BASE -9 22 to -303 16 ft ngvd29) Sandstone Aquifer - Confining Unit (SC) Sv = 0.3 Ss = 0.00001 Por = 0.05 **[0.4 - 1151] [0.12 - 1660]** System L7 (-10.29 to -304.71 ft ngvd29) Sy = 0.3Sandstone Aquifer – Carbonate Zone (S1 Mid-Hawthorn Confining Unit (H2) Por = 0.05 (-91.53 to -545.29 ft ngvd -29)Sv = 0.3Mid-Hawthorn Aquifer (MH) Por = 0.25[3.18 - 141] [0.13 - 846] Ss range = 4e-5-4.7e-4 Avg = 1.2e-4(-162 49 to -585 01 ft ngvd29)

[K, Range - ft/day] [K, Range - ft/day]

Simulated Average Annual Water Levels – Water Table Aquifer

Simulated Average Annual Water Levels – Lower Tamiami Aquifer

Simulated Average Annual Water Levels – Sandstone Aquifer (Clastic)

Simulated Average Annual Water Levels – Sandstone Aquifer (Carbonate)

Simulated Average Annual Water Levels – Mid-Hawthorn Aquifer

1-in-10 Year Drought

- ➤ 1-in-10 drought year was calculated based on rainfall data from 1965 to 2013
- 1-in-10 drought year rainfall~45 inches
- ➤ 2007 had the closest rainfall (43 inches) to the 1-in-10 drought year within the model simulation period

Recreation/Landscape Wells

