C-43 West Basin Storage Reservoir (WBSR) Water Quality Component (WQC) Plan Selection Update

September 13, 2021

Meeting Format

Zoom Meeting Functions

I. Question and Answer (Q&A) – Type in Questions

 II. Raise Your Hand for Comments at end of Q&A session
 Note: If you call in only (not on the internet) press *9 to raise and lower hand and *6 to mute or unmute.

Jennifer Reynolds, SFWMD

Project Background

Executive Order 19-12, January 10, 2019

 Provide additional treatment and improve the quality of water leaving the C-43 West Basin Storage Reservoir (WBSR)

 Greater protection of Florida's environment and water quality

Georgia Vince, J-Tech

Address Harmful algal blooms

Charlotte County

Caloosahatchee River and Estuary (off map)

S79

Franklin Lock

alise a

Lee

County

Townsend Canal

Flows in/out of reservoir

Glades County

Ortona Lock

S78

Lake Okeechobee (off map)

owned lands

C-43 WBSR

SFWMD-

Caloosahatchee River

Hendry County

Water Quality Component Feasibility Study (Phase I) Summary

Project Timeline

WQC Project Process to Date

2019		2020	2021	
July 3, 2019 Water Quality Feasibility Study (WQFS) Kick Off	April 3, 2020 Final Information Collection Summary Report	November 20, 2020 Final WQFS		

Feasibility Study Factors Evaluated

- Pre-treatment (prior to entering C-43 WBSR)
- ☆ In-reservoir treatment
- Post-storage treatment
- Cost-effective and technically feasible technologies
- Conventional and/or innovative treatment technologies
- Biological, chemical, and physical water quality treatment technologies
- Scalable and "available" for long-term technologies
- Cost benefit analysis to identify most cost-effective alternatives

Georgia Vince, J-Tech

Feasibility Study Recommended Alternatives

- 1. Alum Treatment (both in-reservoir and post-storage)
- 2. Stormwater Treatment Area (STA) with Bold and Gold®
- 3. Hybrid Wetland Treatment Technology (HWTT)
- 4. Sand Filter with Bold and Gold $\ensuremath{\mathbb{R}}$

Georgia Vince

J-Tech

5. 5,000-acre STA (retained based on public feedback) Final Study available:

https://www.sfwmd.gov/content/c43waterqualitystudy

Water Quality Component Siting Evaluation (Phase II) Overview

Project Timeline

WQC Project Process to Date

2019		2020			2021	
July 3, 2019 Water Quality Feasibi' ky St. 1y / 7QFS) K. x Off	April 3, 2020 Final Information C. Vention Summary Report	November 20, 2020 Final V JFS	December 16, 2020 Water Quality Component (WQC) Siting Evaluation Kick Off	March 17, 2021 Final In Reservoir Alum Treatment Memorandum	March 26, 2021 Final Siting Evaluation Report	

In-Reservoir Alum Injection System

- Based on the Feasibility Study results, in-reservoir alum treatment was the <u>most cost-effective</u> and could be applied at reservoir inflow pump station
- Additional evaluation was performed to determine dosing
- Construction cost estimate based on conceptual design \$5M
- SFWMD executed a contract for full design to be completed October 2021
- Additional details later in presentation

Georgia Vince, J-Tech

WQATT Pilot Study Update

Cassondra Armstrong, SFWMD Sold and Gold® patented media

- ☆ TN removal average of 32%, mostly NOx
- Sand filter
 - TN removal average of 13%, mostly particulate N
- Aluminum sulfate (alum) jar test
 - Dosing for maximum nutrient removal was between 12–14 mg/L
 - ☆ TN removal: 43% wet season; 51% dry season
 - ☆ TP removal: 90% wet season; 94% dry season
- ☆ In-tank alum dosing
 - Testing dosing at 0.6 and 1.2 mg/L
 - TN removal 30% and 33%
 - ✤ TP removal 62% and 72%

Nitrogen Removal with Filtration Media

Cassondra Armstrong, SFWMD

In-tank Alum Dosing Comparison

Cassondra Armstrong, SFWMD

Full-scale STA

- Feasibility Study did not include the cost for the land acquisition required for the full-scale (5,000 acre) STA
- Updated cost estimate for construction and land acquisition is approximately \$300 million
- Socio-economic concerns related to purchase of this much land
- Therefore, the full-scale STA did not move forward to Conceptual Design

Water Quality Targets for the WQC

- Identified water quality treatment targets from the
- Based on S-79 (downstream) median dry season (November–April) TN, TP, and TSS concentrations
 - Most conservative values
 - During time of year when reservoir would likely be releasing

Parameter	Target	Percent Reduction
Total Nitrogen (TN)	1.23 mg/L	26%
Total Phosphorus (TP)	0.088 mg/L	40%

Questions?

Water Quality Component Conceptual Design

Project Timeline

Matrix Development and Results

- Natural Systems/Habitat Value/Ecosystem Services
- Confidence in Performance
- Operational Simplicity
- Energy Efficiency
 Energy
 Efficiency
 Energy
 Efficiency
 Energy
 Energy
- Net Present Value (cost over 50 years) has the most weight
- Criteria were scored
- Alternatives were ranked based on scoring

Georgia Vince

J-Tech

Net Present Value (50-year) Ranking

Net Present Value 50-year (\$ millions)

Georgia Vince, J-Tech

WQC Plan Evaluation and Selection

- 1. Alum Treatment (post- reservoir storage)
- 2. Stormwater Treatment Area (STA) with Bold and Gold®
- 3. Sand Filter with Bold and Gold®
- 4. Hybrid Wetland Treatment Technology (HWTT)
- 5. 150- acre Sand Filter

Project Timeline

Ē

WQC Plan – Post-storage Sand Filter

Examples of Florida sand filter projects

Georgia Vince, J-Tech

Post-storage Operation Reservoir Discharge

Ę

In-Reservoir Alum Injection System

Jim Bays, J-Tech

Literature Review

- Selected case histories from Florida and other states
- ✤ 20 years of study
- Effectiveness has been proven for alum application
- ✤ 20-40% total nitrogen reduction
- ✤ 60-90% total phosphorus reduction
- No toxic responses
- No effect to reservoir components/materials at proposed concentrations
- Similar results noted for alum sulfate and aluminum chlorohydrate

Residuals

- ☆ Alum dosing: 0.6 mg/L
- Residual accumulation low
 - ✤ Less than 0.3 cm/year in Cell 1
 - Most deposits in Cell 1
 - Sedimentation modeling evaluation
- Consolidation of floc in first 30 days
- ✤ 60–90 days for stabilization
- 100 years = 13 inches accumulation
- Long-term fate is crystallization within the sediments

In-Reservoir Alum Injection System

In-Reservoir Alum Injection Additional Evaluation

- During design alum model was updated new version includes algae analysis
- Evaluated increase in dosing, up to 3x original dose
- Results:
 - No increased corrosion effects
 - No significant increase in sedimentation/residuals
 - Alum levels below EPA standards
 - Increased dose did not have significant increase in nutrient removal
- Conclusion original dose (0.6 mg/L) was proven to meet downstream water quality targets using updated model
- ✤ No cost increase

Jim Bays, J-Tech

In-Reservoir Alum Nutrient Reduction Achieves Water Quality Targets

Parameter	Target	Percent Reduction
Total Nitrogen (TN)	1.23 mg/L	26%
Total Phosphorus (TP)	0.088 mg/L	40%
45% 40% 35% 30% 25% 20% 15% 10% 5% 0%	TN Target	40% TP Target
TN		ТР

Jim Bays, J-Tech

Post-Dosing Residuals

Dissolve Aluminum Post-Alum Dosing

Sulfate concentrations increased from 27 mg/L to 29 mg/L and was within natural variability of parameter in the C-43

Net Present Value (50-year) Ranking

Water Quality Component Plan Selection

SFWMD WQC Plan Selection

 In-reservoir alum injection meets water quality targets, is most cost-effective, and will be online concurrent with the reservoir

- Sedimentation rates, sulfate concentrations, and potential for alum micro floc
 - Not an issue for reservoir operation or benthic and wildlife health
- SFWMD-owned lands available for future water quality projects

Kim Fikoski, SFWMD

Questions?

SFWMD Project Manager: Kim Fikoski kfikoski@sfwmd.gov

Project Website:

https://www.sfwmd.gov/content/c43waterqualitystudy