

By Sheng Yue & Emile Damisse

April 2012

SFWMD-HIST-018

Hydro Data Management Section Infrastructure Management Bureau South Florida Water Management District

FLOW RATING ANALYSIS FOR PUMP STATION S650

TABLE OF CONTENTS

TABLE OF CONTENTS	.I
LIST OF FIGURES	Π
LIST OF TABLES	
ACKNOWLEDGEMENTI	Π
DEFINITIONSI	V
EXECUTIVE SUMMARY	.1
1.0 INTRODUCTION	.2
1.1 BACKGROUND 1.2 Objectives and Scope	.2
2.0 STATION DESIGN	
2.1 PUMP PERFORMANCE CURVE FOR S650	.6
3.0 RATING ANALYSIS	.8
4.0 CONCLUDING REMARKS	12
REFERENCES	13
APEENDIX A: P-321 PUMP CURVE CALCULATION SHEET	13
APEENDIX B: P-322 PUMP CURVE CALCULATION SHEET	13
APEENDIX C: P-323 PUMP CURVE CALCULATION SHEET	13

FLOW RATING ANALYSIS FOR PUMP STATION S650

LIST OF FIGURES

FIGURE 1. LOCATION MAP FOR PUMP STATION S650	2
FIGURE 2. PLAN VIEW OF PUMP STATION S650	4
FIGURE 3. PROFILE VIEW OF PUMP OF 100 CFS	5
FIGURE 4. PROFILE VIEW OF PUMP OF 75 CFS	5
FIGURE 5. PUMP PERFORMANCE CURVE FOR P-321 OF 100 CFS	6
FIGURE 6. PUMP PERFORMANCE CURVE FOR P-322 OF 75 CFS	7
FIGURE 7. PUMP PERFORMANCE CURVE FOR P-323 OF 75 CFS	7
FIGURE 8. FLOW RATING CURVE FOR PUMP OF 100 CFS	.10
FIGURE 9. FLOW RATING CURVE FOR PUMP OF 75 CFS	.11

LIST OF TABLES

TABLE 1. DESCRIPTION FOR S650	3
TABLE 2. MINOR LOSS COEFFICIENTS	8
TABLE 3. TDH, HEAD LOSS, TSH AND DISCHARGE RELATIONS FOR PUMP OF 100 CFS	9
TABLE 4. TDH, HEAD LOSS, TSH AND DISCHARGE RELATIONS FOR PUMP OF 75 CFS	9
TABLE 5. FLOW RATING COEFFICIENTS FOR THE PUMPS AT S650	.10
TABLE 6. COMPARISON BETWEEN TESTED AND CALCULATED FLOWS FOR PUMP OF 100 CFS	.11
TABLE 7. COMPARISON BETWEEN TESTED AND CALCULATED FLOWS FOR PUMP OF 75 CFS	.12

FLOW RATING ANALYSIS FOR PUMP STATION S650

ACKNOWLEDGEMENT

The authors wish to express their appreciation to Jiangchang Cai and John Creswell for collecting the pump performance curve and pump design information for this rating analysis.

DEFINITIONS

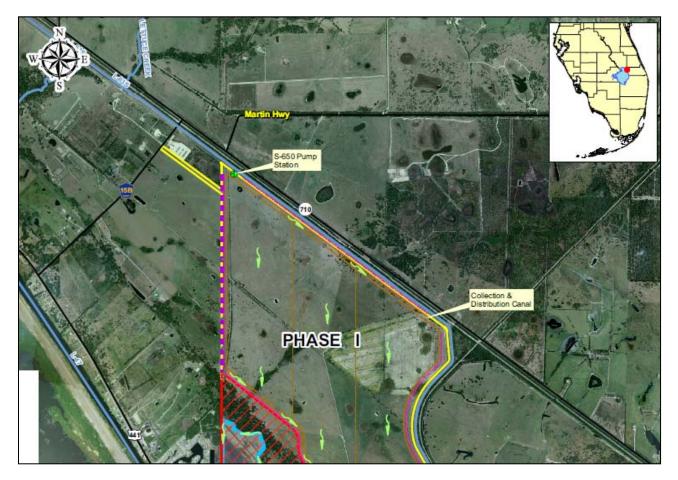
Acronyms

AARE	Average absolute relative error
ARE	Absolute relative error
SFWMD	South Florida Water Management District
STA	Stormwater treatment area
TDH	Total dynamic head
TSH	Total static head

FLOW RATING ANALYSIS FOR PUMP STATION S650

EXECUTIVE SUMMARY

Pump Station S650 houses three electric pumps: one with design capacity of 100 cfs and the other two with design capacity of 75 cfs. This report summarizes a flow rating analysis for each type of the pump at Pump Station S650 based on their corresponding pump performance curves. The developed rating equations will be used to compute flow through the pump station.



South Florida Water Management District FLOW RATING ANALYSIS FOR PUMP STATION S650

1.0 INTRODUCTION

1.1 Background

Pump Station S650 houses three electric pumps: pump P-321 with design capacity of 100 cfs and P-322 and P-323 with 75 cfs. Pump Station S650 conveys water from the improved L-64 Canal to the Distribution Canal of Lake Ranch Stormwater Treatment Area (STA-N). The station is located near the northwest corner of the STA-N bounded to the north by the improved L-64 Canal, as shown in **Figure 1**. Both manual and remote operations of the pumping units are possible. Remote operation is from the SFWMD's Operations Control Center in West Palm Beach. Telemetry control is also available to the remote operators.

Figure 1. Location map for Pump Station S650

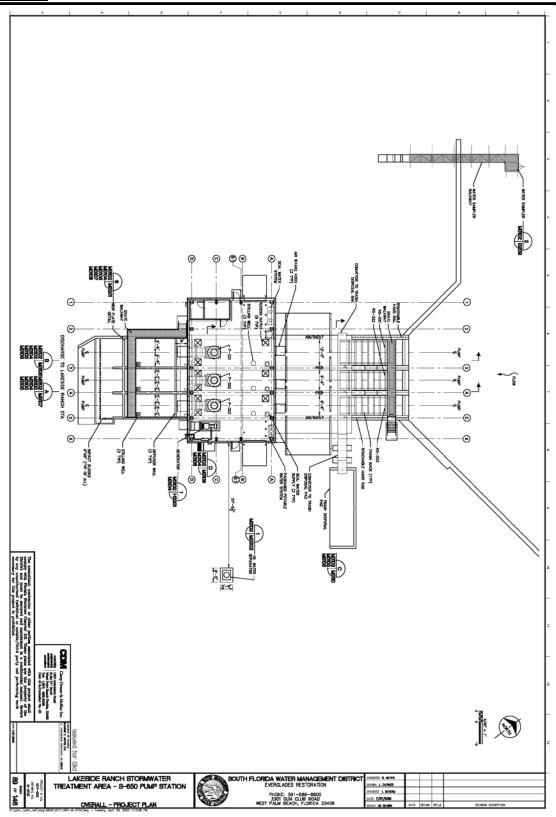
1.2 Objectives and Scope

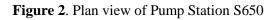
We will conduct a preliminary rating analysis to develop a flow rating equation for each type of the pump at Pump Station S650 to compute flow through the pump station.

FLOW RATING ANALYSIS FOR PUMP STATION S650

2.0 STATION DESIGN

Pump Station S650 houses three electric pump units, P-321 with design capacity of 100 cfs and P-322 and P-323 with 75 cfs. Pumps P-322 and P323 are identical. **Table 1** presents more detailed description for S650. **Figure 2** illustrates the plan view of Pump Station S650. **Figure 3** and **Figure 4** show the profile view of the pump of 100 cfs and 75 cfs, respectively.


Pump Type	Item	Description
	Number of pumps	1
	Design pump capacity	100 cfs
P-321: 100 cfs	Engine motor horsepower	200 Hp
	Design pump speed	591 rpm
	Discharge pump diameter	48 in
	Number of pumps	2
	Design pump capacity	75 cfs
P-322 & P-323: 75 cfs	Engine motor horsepower	200 Hp
	Design pump speed	591 rpm
	Discharge pump diameter	42 in
	Operating Floor Elevation	34.0 ft, NAVD
	Intake Floor Elevation	3.0 ft, NAVD
	Minimum Intake Water Elevation	14.5 ft, NAVD
	Maximum Intake Water Elevation	18.0 ft, NAVD
Elevation	Centerline Discharge Pipe Elevation (Pump P-321, Pump P-322 & P-323)	24.76 ft NAVD
	Maximum Discharge Pool Elevation (Pump P-321)	30.26 ft NAVD
	Maximum Discharge Pool Elevation (Pump P-322 & P-323)	30.17 ft NAVD


Table 1. Description for Pump Station S650

THE MAN BERNARD

South Florida Water Management District

FLOW RATING ANALYSIS FOR PUMP STATION S650

FLOW RATING ANALYSIS FOR PUMP STATION S650

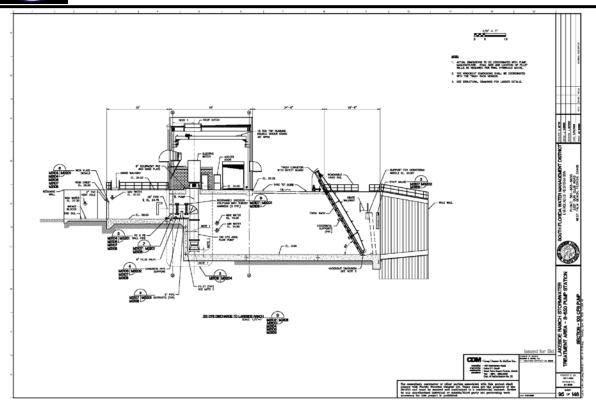


Figure 3. Profile view of the pump of 100 cfs

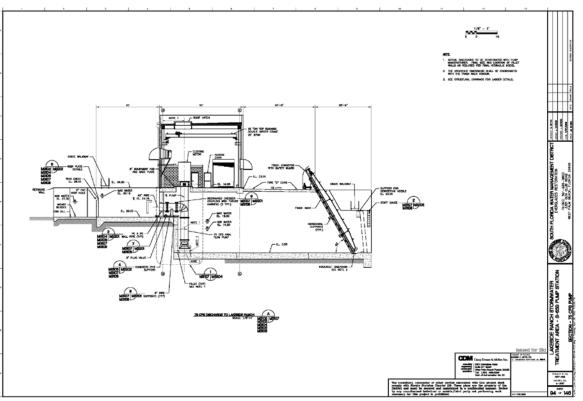


Figure 4. Profile view of the pump of 75 cfs

FLOW RATING ANALYSIS FOR PUMP STATION S650

2.1. Pump Performance Curves for S650

The manufacturer provides the pump performance curves for P-321 with 100 cfs and P-322 & P-323 with 75 cfs based on the pump tests, as shown in **Figure 5** through **Figure 7**. Appendix A through C present the corresponding calculation sheets for these curves.

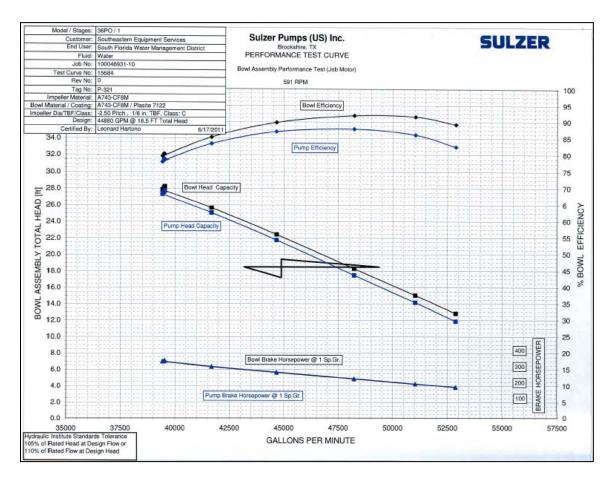


Figure 5. Pump performance curve for P-321 (100 cfs)

FLOW RATING ANALYSIS FOR PUMP STATION S650

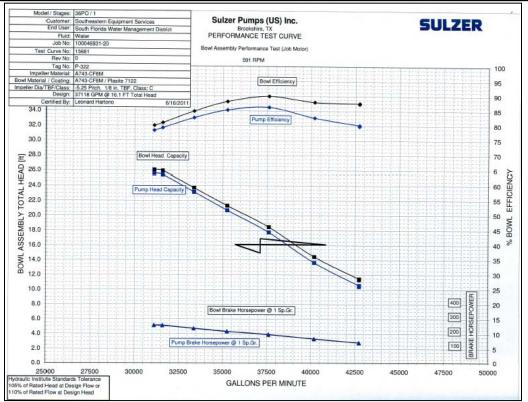


Figure 6. Pump performance curve for P-322 (75 cfs)

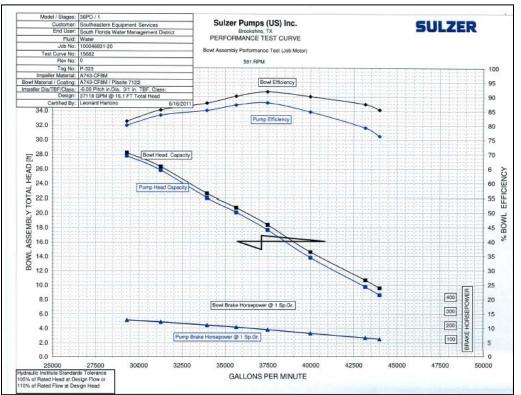


Figure 7. Pump performance curve for P-323 (75 cfs)

FLOW RATING ANALYSIS FOR PUMP STATION S650

3.0 RATING ANALYSIS

We will develop a Case 8 flow rating equation for each type of pump at Pump Station SS650, based on the factory pump performance curves obtained from the pump tests. Case 8 rating equation is developed based on dimensional analysis and pump affinity laws. This conventional rating equation represents all the possible cases, as documented in Damisse (2001) and Imru and Wang (2003). Equation below shows the Case 8 flow rating equation.

$$Q = A \left(\frac{N}{No}\right) + BH^{c} \left(\frac{No}{N}\right)^{2C-1}$$
(1)

$$H = \max\{CL, TW\} - HW \tag{2}$$

Where

vv nere	
Q:	Discharge in cfs;
<i>H</i> :	Total static head (TSH);
<i>N</i> :	Pump engine speed in rpm;
No:	Design pump engine speed in rpm (= 591 rpm);
<i>A</i> , <i>B</i> and <i>C</i> :	Regression coefficients determined through regression analysis (A > 0 , B < 0 , and C $>$
	1.0).
CL:	Discharge pipe outlet centerline elevation;
TW:	Tailwater elevation;
HW:	Headwater elevation.

For electric pumps with constant speed, $N = N_o$, and Equation (1) becomes

$$Q = A + BH^{C}$$
⁽³⁾

The H versus Q relationship can be estimated by subtracting the total head losses through the intake and discharge works from total dynamic head (TDH) on the pump performance curve. We will then conduct a non-linear regression analysis using SAS NLIN function to determine the coefficients in the above equation.

We computed TSH by subtracting total head loss from TDH. The total head loss includes friction loss and minor losses. Friction head loss was provided by the pump manufacturer as given in Appendix A through C. **Table 2** presents the minor loss coefficients for pump inlet, outlet, and bend (HIE, 1990).

Minor loss coefficient	Value
Bell Mouth Inlet	0.05
Pipe Exit - Projecting Exit	1.00
90 Degree Elbow	0.195
Total	1.25

Table 2.	Minor	Loss	Coefficients
----------	-------	------	--------------

Table 3 and **Table 4** present TDH, total head loss, and TSH vs. *Q* values for the pump of 100 cfs and the pump of 75 cfs, respectively. **Table 5** provides the flow rating equation coefficients of Eq. (3) corresponding to each type of the pump, which were estimated by nonlinear regression analysis.

Flo	DW	Pump	Head loss (ft)		Total	Pump	
GPM	CFS	total head (ft)	Velocity head loss	Minor loss	Total	static head (ft)	speed (rpm)
44801.4	99.8	21.8	7.4	1.225	8.625	13.175	590
39495.2	88.0	27.6	5.7	0.952	6.652	20.948	588
39432.1	87.9	27.3	5.7	0.949	6.649	20.651	590
41753.6	93.0	25.1	6.4	1.064	7.464	17.636	590
44736.4	99.7	21.7	7.3	1.221	8.521	13.179	591
48392.9	107.8	17.5	8.6	1.429	10.029	7.471	593
51292.3	114.3	14.2	9.6	1.605	11.205	2.995	593
39600.3	88.2	27.7	5.7	0.957	6.657	21.043	588

Table 3. TDH, Head Loss, TSH and Discharge Relations for Pump -100 cfs

D	Flo)W	Pump	Head loss (ft)			Total	Pump
Pump #	GPM	CFS	Total Head (ft)	Velocity head loss	Minor loss	Total	static head (ft)	Speed (rpm)
	37557.2	83.7	17.7	5.2	1.468	6.668	11.032	591
	31427.2	70.0	25.4	3.6	1.028	4.628	20.772	588
	33254.1	74.1	23.2	4.0	1.151	5.151	18.049	589
	35191.2	78.4	20.7	4.5	1.289	5.789	14.911	590
P-322	37543	83.6	17.7	5.2	1.467	6.667	11.033	590
	40326.4	89.9	13.6	6.0	1.693	7.693	5.907	593
	42877.9	95.5	10.5	6.7	1.914	8.614	1.886	593
	42942.2	95.7	10.4	6.8	1.920	8.720	1.680	594
	30952.7	69.0	25.6	3.5	0.997	4.497	21.103	588
	37306.5	83.1	18.2	5.1	1.449	6.549	11.651	590
	31092.5	69.3	25.8	3.5	1.006	4.506	21.294	588
	33890.2	75.5	22	4.2	1.196	5.396	16.604	590
р 222	35592.5	79.3	20.1	4.6	1.319	5.919	14.181	590
P-323	37483	83.5	17.7	5.1	1.463	6.563	11.137	591
	40110.1	89.4	13.8	5.9	1.675	7.575	6.225	593
	43315.8	96.5	9.8	6.9	1.953	8.853	0.947	593
	29166.8	65.0	27.8	3.1	0.886	3.986	23.814	588

Pump Type	Rating Coefficient	Estimate	Approximate Lower 95% Confidence Limit	Approximate Upper 95% Confidence Limit
	А	117.6	114.6	120.6
P-321 of 100 cfs	В	-1.229	-2.162	-0.296
	С	1.040	0.819	1.261
	А	96.839	96.131	97.546
P-322 & P-323 of 75 cfs	В	-0.956	-1.173	-0.740
	С	1.094	1.026	1.163

Table 5. Flow Rating Coefficients for the Pumps at S650

Figure 8 illustrates the developed rating curve for the pump of 100 cfs, and **Figure 9** for the pump of 75 cfs. These diagrams illustrate that the rating curves from the developed rating equation well fits the tested data. **Table 6** and **Table 7** present the relative errors between tested and calculated flows for the pump of 100 cfs and 75 cfs, respectively. The AARE for the pump of 100 cfs is 0.3% and the pump of 75 cfs is 0.4%. These results indicate that the developed ratings well represent the relationship between total static head and discharge obtained from the manufactory pump tests.

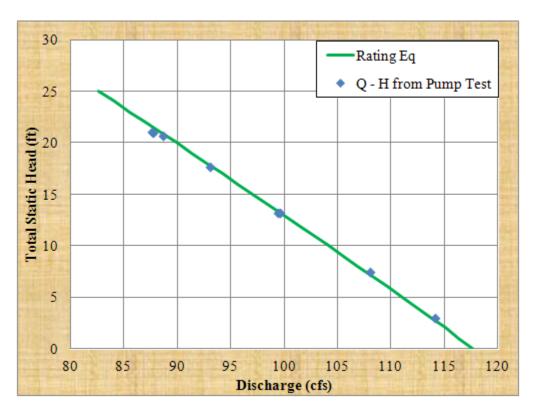


Figure 8. Flow rating curve the pump with design capacity of 100 cfs

FLOW RATING ANALYSIS FOR PUMP STATION S650

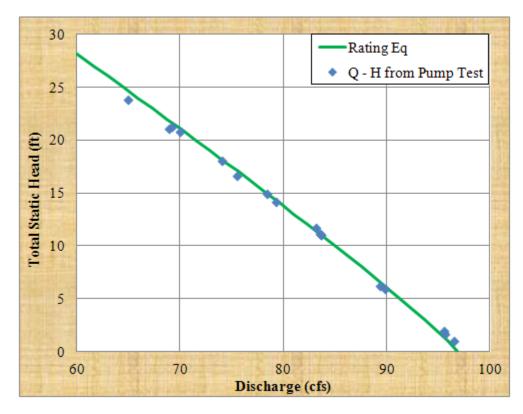


Figure 9. Flow rating curve the pump with design capacity of 75 cfs

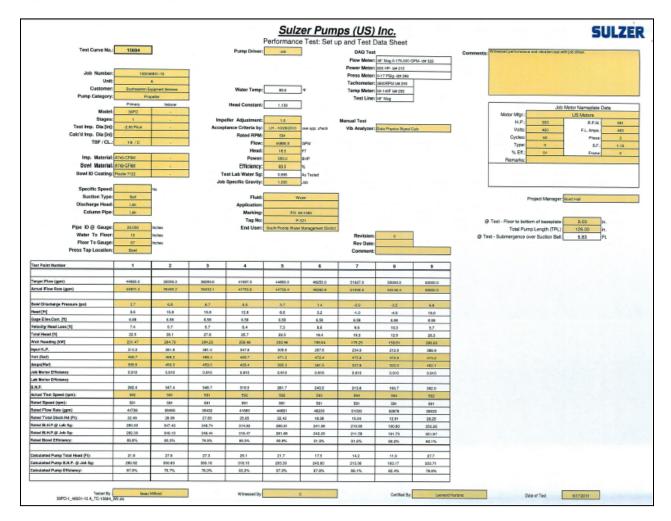
TSH (ft)	Pump speed at test (rpm)	Discharge from pump test (cfs)	Discharge from New Rating (cfs)	Absolute Relative Error (%)
13.175	590	99.8	99.4	0.4
20.948	588	88.0	87.8	0.3
20.651	590	87.9	88.7	1.0
17.636	590	93.0	93.0	0.0
13.179	591	99.7	99.6	0.0
7.471	593	107.8	108.1	0.2
2.995	593	114.3	114.2	0.1
21.043	588	88.2	87.6	0.7
Average	0.3			

-					
TSH (ft)	Pump speed at test (rpm)	Discharge from pump test (cfs)	Discharge from New Rating (cfs)	Absolute Relative Error (%)	
11.032	591	83.7	83.6	0.1	
20.772	588	70.0	69.8	0.4	
18.049	589	74.1	73.8	0.4	
14.911	590	78.4	78.3	0.2	
11.033	590	83.6	83.4	0.3	
5.907	593	89.9	90.5	0.7	
1.886	593	95.5	95.3	0.3	
1.680	594	95.7	95.7	0.0	
21.103	588	69.0	69.3	0.5	
11.651	590	83.1	82.6	0.6	
21.294	588	69.3	69.0	0.3	
16.604	590	75.5	76.0	0.6	
14.181	590	79.3	79.2	0.1	
11.137	591	83.5	83.5	0.0	
6.225	593	89.4	90.1	0.8	
0.947	593	96.5	96.3	0.3	
23.814	588	65.0	65.5	0.8	
Average	0.4				

Table 7. Comparison between Tested and Calculated Flows for pump of 75 cfs

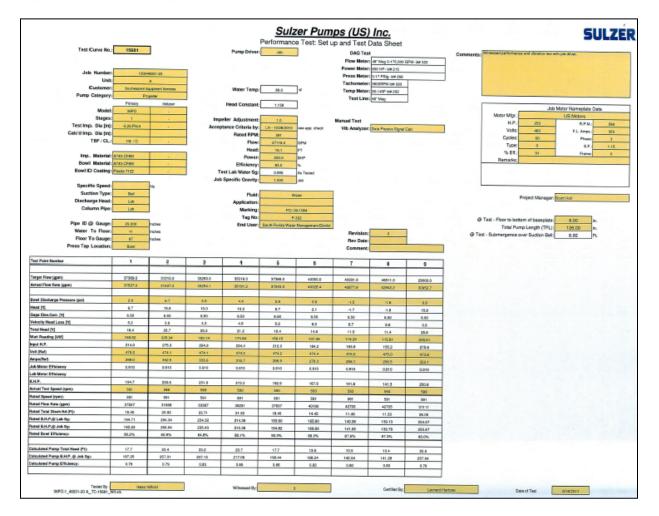
4.0 CONCLUDING REMARKS

We conducted rating analysis for the each type of the pump at Pump Station SS650 based on the pump performance curves. **Table 5** presents the coefficients of the flow rating equations for the pump units at Pump Station S650. The flow rating equations need to be calibrated, and to be potentially improved based on future flow measurements after the pump stations are constructed and operated.

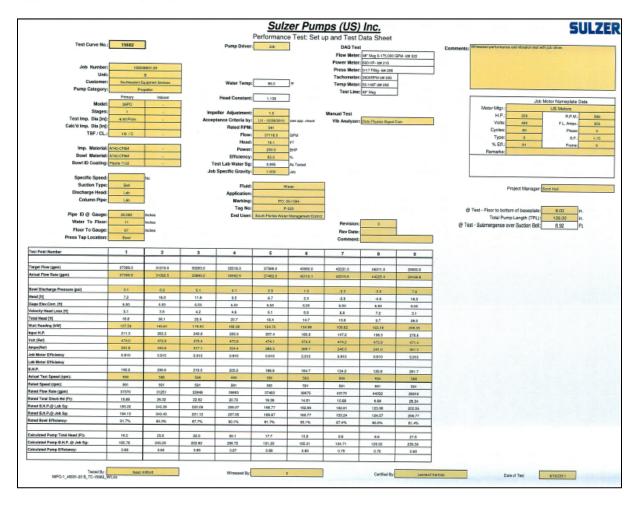

REFERENCES

- Damisse, E. 2001. Flow rating development for G335 Pump Station in STA-2. Hydrologic Data Management Division, South Florida Water Management District, West Palm Beach, Florida.
- HIE, 1990. Hydraulic Institute Engineering Data Book, 2nd Edition. Hydraulic Institute, Cleveland, Ohio.
- Imru, M. and Y. Wang. 2003. Flow Rating Analysis Procedures for Pumps. Technical Publication EMA # 413, South Florida Water Management District, West Palm Beach, Florida.

FLOW RATING ANALYSIS FOR PUMP STATION S650


Appendix A: P-321 pump curve calculation sheet

FLOW RATING ANALYSIS FOR PUMP STATION S650


Appendix B: P-322 pump curve calculation sheet

FLOW RATING ANALYSIS FOR PUMP STATION S650

Appendix C: P-323 pump curve calculation sheet

