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Problem Definition (1)

m Uncertainty in objective value, such as
performance measures, IS more important
than uncertainties in model parameters In
decision making

m Uncertainty in objective value come from
model parameters and objective function
uncertainties.

m Objective function often subject to timely
modification




Problem Definition (2)

m Analysis of model parameter
uncertainties Is tedious and should be
done before decision-making

m Managers need a tool for fast
responses to questions on confidence
levels among alternatives subject to
modified priorities




Demonstration Objectives

m Inherent uncertainties in parameters of
established models induce uncertainties In
performance measures (objective value)

m The Nested Latin-hypercube (NLH) is a
general tool, albeit brute force, to obtain
uncertainty information

m Uncertainty analysis of model applications
can help to quantify the confidence level of a
project success




Tasks

m Select a calibrated model — an aquifer
pollution clean-up model using WASH123D
IS selected

m Apply the NLH technique to the model to
collect samples of the pump-and-treat
operation with variable model parameters

m Find the distribution of the operation costs



A Nested Latin-Hypercube Technigue
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bound of a model parameter, K = hydraulic conductivity tensor, A = dispersivity, and 7= tortuosity.
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Instrument Transect of ORNL WAG 5

e Three multilevel
wells and 20 drive
point well clusters

e Br, Ne, He tracer
Injection to
characterize
groundwater
dynamics and
pollutant transport
(Jardine et al.,
1999, WRR)

e Field observations
used to calibrate a
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Empirical PDFs from Model Calibration

- three flow zones, BZ, PZ1 and PZ2
- two pore domains, fracture and matrix
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Modeling Assumptions

m The pollutant does not react with rock
matrix.

m Only one single pumping-injection dipole is
used for the remediation operation and
pumping rate is equal to injection rate.

m The pumping and injection rate PDF Is
assumed uniformly distributed. Model
parameter PDFs are taken as they are from
the calibration.




Clean-up of the Aquifer




Residual Pollutant in Aquitar
(91% Removal Efficiency in 720 hr)




Empirical PDFs of Pump-and-Treat
Aguifer Remediation Cost
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Clean Up Goal: 70%

Sample Size = 43
Sample Mean = 4372.07
Sample Std = 998.84
Skewness = —0.14
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Clean-up Cost vs. Clean-up Goal
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Assumed Cost Formulae

m Cost of pumping and injection: $0.028/m3,
using estimated electricity cost of 9.20
¢/kKWh.

m Cost of water treatment: $1.32/m3

m Well installation and maintenance, supplies,
and other fixed costs are NOT included in
the previous two figures.

m A huge penalty is applied to realizations that
do not pass the clean-up goal thresholds.
These realizations are removed before the
cost PDFs are derived.




Summary and Conclusion

m A NLH technique was used to determine the
cost of remediating a fractured-rock
aquifer/aquitard contaminated with a
pollutant.

m A small amount of residual pollutant was
found to remain Iin the aquitard after 30
days of pump-and-treat operation.

m The NLH sampling can be applied to any
model, even without source code, but Is
computer-intensive



Summary and Conclusion

m Empirical PDFs of remediation cost were
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Next

m Take advantages of parallel
computation.

m Continually synthesize the distribution
of objective value during the long
sampling for fast responses to
management guestions.

m ldentify critical model parameters with
respect to performance measures.




