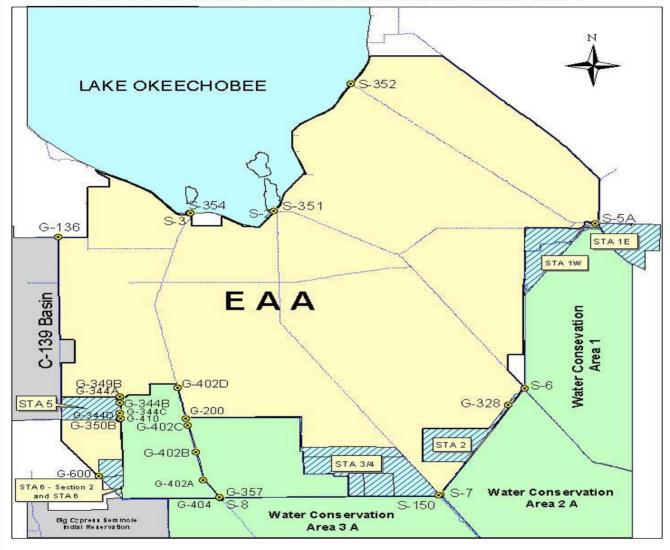


TOC April, 2004


Everglades Regulatory Program (ECP)

 Address P at the source through Best Management Practices (BMPs)

- Everglades Agricultural Area (EAA)
- C-139 Basin

EVERGLADES AGRICULTURAL AREA

BMP Program Objectives EFA Mandates

EAA:

Reduce the annual p load from the EAA by 25% compared to historic levels.

First Compliance Year: WY96

C-139:

Maintain annual P load from the C139 at or below historic levels.

First Compliance Year: WY03

Chapter 40E-63, F.A.C. Best Management Practices (BMPs)

Operational or physical enhancements designed to reduce P levels in discharges

EAA: Maintain 25 points at all times

C-139: Minimum of 15 points initially, increasing if out of compliance

EAA Basin Results

- EAA Basin has performed better than 25% load reduction requirement for the 8th year since program initiation
- Three-year trend 57% load reduction

WY03 EAA Basin Results

Goal: 25% Reduction from Historic

Load Reduction = 35%

Observed Load (with BMPs)

81 tons of phosphorus left the EAA Basin

66 ppb average phosphorus concentrations

Compliance Model Predicted Load (Base Period Prior to BMPs)

94 tons predicted with rainfall adjustment

173 ppb average phosphorus concentrations

EAA Annual Phosphorus Loads

Water Year	TP Annual Average Conc. (ppb)	Observed TP Load (mt)	Predicted TP Load ¹ (mt)	% TP Load ² Reduction	Annual Rain (in)	Annual Flow (kac-ft)
1996	98	162	503	68%	53.86	1,336
1997	99	122	240	49%	52.02	996
1998	102	161	244	34%	56.12	1,276
1999	123	128	249	49%	43.42	833
2000	119	193	425	55%	57.51	1,311
2001	64	52	195	73%	37.28	667
2002	77	101	227	55%	49.14	1,071
2003	66	81	125	35%	45.55	992

WY03 C139 Basin Results

Goal: Maintain at or Below Historic
Observed Load (with BMPs)
77 tons of phosphorus left the C139 Basin
279 ppb average phosphorus concentrations

Compliance Model Predicted Load
(Base Period Prior to BMPs)
39 tons predicted with rainfall adjustment
227 ppb average phosphorus concentrations

Strategies for Improvement

- Dedicated Funds for enhancing source controls through BMPs
- Site inspections
- Technical Feedback through extension programs
- Water quality improvement strategies at the sub-region level
- BMP Incentive Program through grants

