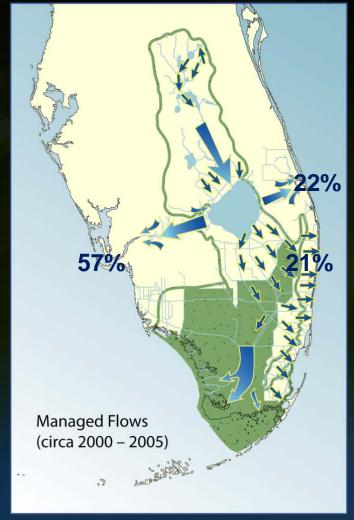


Water Supply Augmentation - Supplemental Environmental Flows

Melissa L. Meeker, SFWMD Executive Director

South Florida Ecosystem Pre-Drainage Flows



- Water flowed from central Florida through Lake Okeechobee and south into Florida Bay
- Natural system composed of over 9 million acres of lakes, rivers and wetlands
- Unique and diverse mosaic of habitat

South Florida Ecosystem Managed Water Flows

C&SF Flood Control System Impacts of Alterations on the Natural System

- Disruption in timing, distribution, quality and quantity of water
 - Impacts to natural flora and fauna
 - Extreme high and low Water Conservation Area and Lake Okeechobee levels
- Harmful freshwater discharges to St. Lucie
 & Caloosahatchee estuaries
- Insufficient water supply to the Caloosahatchee Estuary during dry periods
 - High salinities
 - Loss of tape grass
 - Loss of fish habitat
 - Potential for harmful algal blooms during low-flow, summer conditions
- Solution: Comprehensive Everglades
 Restoration Plan (CERP)

C&SF Flood Control System Lake Management Challenges

- Lake Okeechobee is a critical multi-use body of water
- Dike integrity and concern for impacts to lake ecology at high levels has resulted in lowered average lake depths and exacerbated lake management challenges
 - Safety concerns
 - Extended drought
 - Lack of basin storage
- Continued challenge: Insufficient storage of water to meet human and natural system needs
- Exploring feasible opportunities to realize environmental improvements while CERP is implemented and within the constraints of existing infrastructure operational flexibility

Lake Management Challenges Strategies for Addressing Estuary Conditions

Immediate

- Minor improvements through changes to Adaptive Protocols
- Utilize existing flexibility in lake operations (recommendations to the USACE)

Short/Medium Term

- Capture and release of "new water"
 - Operational changes
 - Water Supply Augmentation-Supplemental Environmental Flows

Medium/Long Term

- Basin storage projects
- Construction of C-43 West Basin Reservoir
- Revised Lake Regulation Schedule (within ecological envelope)
- Herbert Hoover Dike Rehabilitation

Strategies for Addressing Estuary Conditions Activities To Date

- Screening level analysis of thousands of options to determine the effectiveness of different concepts
 - LORS-2008 flexibility
 - Adaptive Protocol modifications
 - Lake Okeechobee Service Area water shortage management
 - Water Supply Augmentation
 - Refined Water Supply Augmentation (additional constraints to minimize effects on Everglades)
- ~12 informal meetings with various stakeholders to solicit feedback; develop, evaluate and refine options
- 7 presentations to Governing Board and WRAC

Strategies for Addressing Estuary Conditions Stakeholder Feedback

- Generally positive support from WRAC members to move Environmental Water Supply Augmentation option forward as viable solution
- Environmental community concerns regarding two key issues:
 - Impacts to deliveries of water to the Everglades
 - Water quality
- Additional concerns
 - Interim or temporary in nature while projects are constructed
 - Assurances

Screening Level Analysis Performance Summary

					·				
				PERFORMANCE CHANGES RELATIVE TO AP5.50					
	WSE	LORS08	AP5.50	EWSA6	EWSA8	EWSA12	AP5.5R	TA524R	
LOK: Peak stage (ft)	18.51	17.25	17.31	-0.03	-0.02	-0.03	-0.01	-0.01	
LOK: Days>17.25'	483	0	11	-8	-8	-8	-1	-6	
LOK: MFL Exc	4	10	7	-2	-1	-1	0	0	
LOSA: Cutback Mos	26	42	37	-4	1	0	0	1	
CE-I75: Mos>10psu	118	79	58	-58	-56	-56	-7	-7	
CE-FM: Mos>10psu	200	176	163	-45	-41	-41	-1	-3	
SLE: Mos>2000cfs	72	78	79	-1	-1	-1	0	-2	
CE: Mos>2800cfs	95	88	97	0	-1	-1	-1	-7	
WSA (kaf/yr)	0	0	0	69	54	51	0	0	
EWS to CE (kaf/yr)	0	0	13	45	38	38	3	4	
WCA inflow (kaf/yr)	5585	5585	5585	-69 (1.2%)	-54 (1.0%)	-51 (0.9%)	0	0	

Performance Summary Modifications to Adaptive Protocols

Modifications to Adaptive Protoc

Protocols				PERFORM	IANCE CH	ANGES R	LATIVE TO	D AP5.50
 Focuses on re 		EWSA6	EWSA8	EWSA12	AP5.5R	TA524R		
Hydrologic Co	•	•	t in	-0.03	-0.02	-0.03	-0.01	-0.01
•				-8	-8	-8	-1	-6
the late dry season (April – May)				-2	-1	-1	0	0
LOSA: Cutback Mos	26	42	37	-4	1	0	0	1
CE-I75: Mos>10psu	118	79	58	-58	-56	-56	-7	-7
CE-FM: Mos>10psu	200	176	163	-45	-41	-41	-1	-3
SLE: Mos>2000cfs	72	78	79	-1	-1	-1	0	-2
CE: Mos>2800cfs	95	88	97	0	-1	-1	-1	-7
WSA (kaf/yr)	0	0	0	69	54	51	0	0
EWS to CE (kaf/yr)	0	0	13	45	38	38	3	4
WCA inflow (kaf/yr)	5585	5585	5585	-69 (1.2%)	-54 (1.0%)	-51 (0.9%)	0	0

Performance Summary Modifications to Adaptive Protocols

Modifications to Adaptive Protocols

- Focuses on relaxing Tributary
 Hydrologic Condition constraint in
 the late dry season (April May)
- Minor environmental improvements with limited impact on other performance measures
 - Only 1-3 months of additional flows to estuary (Ft. Myers) over 41- year period of record
 - No improvements for Lake Okeechobee MFL

	PERFORM	IANCE CH	LATIVE T	O AP5.50					
	EWSA6	EWSA8	EWSA12	AP5.5R	TA524R				
	-0.03	-0.02	-0.03	-0.01	-0.01				
	-8	-8	-8	-1	-6				
	-2	-1	-1	0	0				
	-4	1	0	0	1				
	-58	-56	-56	-7	-7				
	-45	-41	-41	-1	-3				
	-1	-1	-1	0	-2				
	0	-1	-1	-1	-7				
	69	54	51	0	0				
1	45	38	38	3	4				
	-69 (1.2%)	-54 (1.0%)	-51 (0.9%)	0	0				

Performance Summary Environmental Water Supply Augmentation

FREORMANCE CHANGES RELATIVE TO AP5 50.

Water Supply Augmentation

 Focuses on "new water" made available from the FAA

available from the EAA				TENI ONMANCE CHANGEO NE ATTVE TO AF 0.00				
				EWSA6	EWSA8	EWSA12	AP5.5R	TA524R
LON: I can stage (II)	17.31	-0.03	-0.02	-0.03	-0.01	-0.01		
LOK: Days>17.25'	483	0	11	-8	-8	-8	-1	-6
LOK: MFL Exc	4	10	7	-2	-1	-1	0	0
LOSA: Cutback Mos	26	42	37	-4	1	0	0	1
CE-I75: Mos>10psu	118	79	58	-58	-56	-56	-7	-7
CE-FM: Mos>10psu	200	176	163	-45	-41	-41	-1	-3
SLE: Mos>2000cfs	72	78	79	-1	-1	-1	0	-2
CE: Mos>2800cfs	95	88	97	0	-1	-1	-1	-7
WSA (kaf/yr)	0	0	0	69	54	51	0	0
EWS to CE (kaf/yr)	0	0	13	45	38	38	3	4
WCA inflow (kaf/yr)	5585	5585	5585	-69 (1.2%)	-54 (1.0%)	-51 (0.9%)	0	0

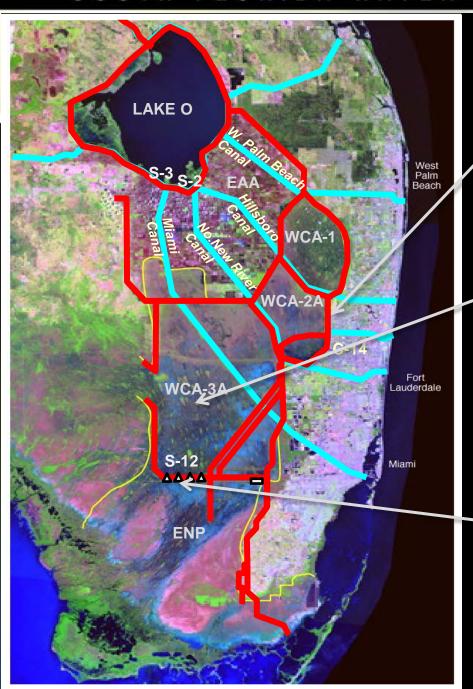
Performance Summary Environmental Water Supply Augmentation

Water Supply Augmentation

- Focuses on "new water" made available from the EAA
- Additional flows to the estuary increases to >40 months over 41year period of record

CE-I75: Mos>10psu	118	79	58
CE-FM: Mos>10psu	200	176	163
SLE: Mos>2000cfs	72	78	79
CE: Mos>2800cfs	95	88	97
WSA (kaf/yr)	0	0	0
EWS to CE (kaf/yr)	0	0	13
WCA inflow (kaf/yr)	5585	5585	5585

PERFORM	IANCE CH	LATIVE TO	O AP5.50	
EWSA6	EWSA8	EWSA12	AP5.5R	TA524R
-0.03	-0.02	-0.03	-0.01	-0.01
-8	-8	-8	-1	-6
-2	-1	-1	0	0
-4	1	0	0	1
-58	-56	-56	-7	-7
-45	-41	-41	-1	-3
-1	-1	-1	0	-2
0	-1	-1	-1	-7
69	54	51	0	0
45	38	38	3	4
69 (1.2%)	-54 (1.0%)	-51 (0.9%)	0	0


Performance Summary Environmental Water Supply Augmentation

Refined Water Supply Augmentation

- Focus analysis to allow WSA only when WCA-2A or WCA-3A stages are above regulation schedule and high probability of discharging to tide
- Limit/eliminate impacts to the Everglades
- 30-50,000 acre-feet of "new water"

				_	_	_	_	
CE: Mos>2800cfs	95	88	97	0	-1	-1	-1	-7
WSA (kaf/yr)	0	0	0	69	54	51	0	0
EWS to CE (kaf/yr)	0	0	13	45	38	38	3	4
WCA inflow (kaf/yr)	5585	5585	5585	-69 (1.2%)	-54 (1.0%)	51 (0.9%)	0	0

PERFORM	IANCE CH	NGES RE	LATIVE TO AP5.50		
EWSA6	EWSA8	EWSA12	AP5.5R	TA524R	
-0.03	-0.02	-0.03	-0.01	-0.01	
-8 -8		-8	-1	-6	
-2 -1		-1	0	0	
-4 1		0	0	1	
-58	-58 -56		-7	-7	
-45	-41	-41	-1	-3	
-1	-1	-1	0	-2	
0 -1		-1	-1	-7	
69 54		51	0	0	
45 38		38	3	4	
-69 (1.2%)	-54 (1.0%)	51 (0.9%)	0	0	

Limitations on southward movement of WCA-3A water results in losses to tide

WCA Regulation Schedules

 WCA-2A or WCA-3A above respective regulation schedule more than 80% of the time

Everglades Restoration Transition Plan (ERTP)

- Lowers WCA-3A regulation schedule as an interim risk reduction measure
- Reduces maximum from elevation 10.0-10.75 to 9.5-10.5, FT-NGVD

S-12 Operations

 Discharges limited for Cape Sable Seaside Sparrow

Strategies for Addressing Estuary Conditions Potential Opportunity

- Refined WSA modeling to target times when WCA-2A and WCA-3A are above regulation schedule and water south of the lake is going to tide
- Requires a higher level effort to complete appropriate verification
 - Lake Okeechobee Water Quality Model, extend period of record, detailed analysis of WSA years
 - Water Management Model (2x2), coding modifications to determine volumes and timing when water is going to tide from WCAs
- Coordinate with Everglades National Park and other stakeholders

Staff Recommendation

1. Adaptive Protocols

Revise Adaptive Protocols to implement immediate measures (AP 5.5R)

2. Environmental Water Supply Augmentation

- Conduct in-depth modeling on WSA when WCAs are above regulation schedule and water is being discharged to tide
- Determine operational constraints
- Extend WQ model period of record to show detailed results for WSA years
- Define options for water quality mitigation/treatment
- Seek regulatory approvals

3. Other

- Work with new Corps leadership to seek opportunities for interim operational flexibility
- Pursue sources of funding for construction of storage projects in the Caloosahatchee basin, including C-43 West Reservoir

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Governing Board Discussion

sfwmd.gov