STA1E PSTA Demonstration Project

Mike Waldon Department of Interior

Technical Oversight Committee Special Meeting October 19, 2010

STA1E PSTA Demonstration Project Timelines

	12/17/03 Estimate	Actual
Start	12/15/03	12/15/03
Design Complete	5/15/04	
Construction Complete	3/3/04	
Tests Start	7/15/04	10/1/08
Tests Complete	7/22/05	12/31/10

STA1E PSTA Summary Results

		Cell A	Cell B	Cell C
Substrate		1" Limesludge	6" Limestone IL-6	6" Limestone IL-8
Area	acres	46.5	46.5	46.5
Oct - Dec 2008 (N=14)				
Flow	kacft/yr	3.4	3.7	3.6
HLR	cm/d	6.1	6.7	6.5
TP In	µg/L	11.6	12.1	12.1
TP Out	µg/L	11.9	9.9	10.4
Feb - July 2010 (N=24)				
Flow	kacft/yr	1.8	2.2	2.0
HLR	cm/d	3.3	4.0	3.5
TP In	µg/L	11.8	11.9	11.6
TP Out	µg/L	11.7	10.7	10.1

Red = no removal

Blue = removal not statistically significant

STA1E PSTA Analysis

Screening Level with N = 6 and $C^* = 4$

		Cell A	Cell B	Cell C
Substrate		Limesludge	Limestone IL-6	Limestone IL-8
Oct - Dec 2008 (N=14)				
TP In	µg/L	11.6	12.1	12.1
TP Out	µg/L	11.9	9.9	10.4
PLI	gP/m2yr	0.27	0.31	0.30
TP k	m/yr		8.0	6.0
Feb - July 2010 (N=24)				
TP In	µg/L	11.8	11.9	11.6
TP Out	µg/L	11.7	10.7	10.1
PLI	gP/m2yr	0.14	0.17	0.15
TP k	m/yr	0.2	2.4	2.9

Most optimistic settling rate = 8.0 m/yr

Red = no removal

Blue = removal not statistically significant

STA1E PSTA Transect Results

7 transects, 2010; only slight distance trends; ±1 stdev error bars

Direct Scaleup STA1E

Assume:

- 1. Approximately 185 kacft/yr to be treated.
- 2. The demonstration loading is used, 3.7 kacft/yr on 46.5 acres.
- 3. Water is pretreated to 12 ppb by existing and expanded EAV/SAV STAs.
 - A. Requires current STA (5100 ac)
 - B. Requires additional EAV/SAV STAs (ca. 4000 ac)

Additional PSTA area required would be (185/3.7)x(46.5) = 2325

acres

Total new area = 6325 acres

The demonstration project was not necessarily operated at the optimal inlet concentration or optimal hydraulic loading - both very low. Direct scaleup not appropriate?

Adding PSTA to STA1E

Estimates based on screening model forecasts

- Model forecasts that current 5100 acres achieves 28.5 ppb at 185 kacft/yr and 155 ppb
- Some can be converted to PSTA (retrofit) Additional PSTA acres needed
- If PSTA inlet <28.5, ppb, additional STA needed
- PSTA may not survive at > 50 ppb

PSTA Implementation

Partially retrofit in existing STA, and partially new construction on additional land

PSTA Implementation

9

Model Based Scaleup STA1E

STA Screening Level Model Assume various PSTA inlet concentrations Assume k = 8.0 m/yr for PSTA, 23.5 m/yr for SAV

PSTA Start	Total PSTA	Internal PSTA	New STA	New PSTA+STA
ppb	acres	acres	acres	acres
12	2,076	0	3,999	6,075
20	7,507	0	1,435	8,942
29	11,171	0	0	11,171
40	14,711	1,216	0	13,496
50	17,087	1,947	0	15,140
SAV Start	Total SAV	Internal SAV	New STA	New SAV
ppb	acres	acres	acres	acres
29	2,979	0	0	2,979

Screening Model Scaleup Economics

PSTA Start	Retrofitting	New Area	Total
ppb	\$ millions	\$ millions	\$ millions
12	0	167	167
20	0	344	344
29	0	469	469
40	27	567	594
50	43	636	679
SAV Start	Retrofitting	New Area	Total
ppb	\$ millions	\$ millions	\$ millions
29	0	60	60

Land = \$10k/ac Retrofit PSTA = \$22k/ac Build STA = \$10k/ac Land + Build PSTA = \$42k/ac

Additional Issue: Pulsed Inflows

The demo project has been run under controlled flow conditions. The effect of pulsing is to lower the efficiency of a wetland system. Performance is expected to be worse under pulsing.

Alternatively, flow equalization could be employed. That would add the expense of building a FEB, which are typically more costly per unit flow than STAs.

Additional Issue: Seepage

Summary

- ✓ The demo project has lasted seven years, and produced one year of data.
- Outlet concentrations were often less than 10 ppb; inlet concentrations were about 12 ppb.
- \checkmark Removals were negative in one of six datasets.
- ✓ Removals were statistically insignificant in four of six datasets.
- ✓ The most optimistic settling rate (Cell B, 2008) was far less than for other wetland types:
 - 8.0 m/yr STA1E Demo PSTA best case
 - > 22 m/yr STA34 PSTA (also produces <10 ppb)
 - > 20 EAV/SAV STA
- ✓ Forecasted added areas required are double to quadruple the existing STAs
- ✓ Forecasted area for PSTA about triple that for SAV for same job
- ✓ Forecasted cost for PSTA about eight times that for SAV for same job