

Marsh Vegetation Data: Introduction to the Floristic Assessment Index

Interagency Team:

Rebekah Gibble, USFWS Senior Wildlife Ecologist Kristin Larson, SFWMD – Staff Environmental Scientist Matthew Powers, SFWMD – Environmental Scientist Brad Robbins, SFWMD – Section Leader Robert Shuford III, SFWMD – Staff Environmental Scientist Donatto Surratt, EPT - ENP Senior Ecologist Brent Warner, SFWMD – Supervising Science Technician

May 30, 2012 Technical Oversight Committee meeting

Purpose

 Provide an update on the technical team's progress in identifying useful protocols for collecting and utilizing vegetation data from the EVPA network

Desired Outcome

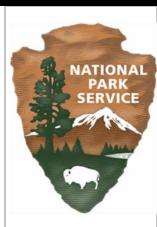
- Efficiently and effectively monitor vegetation changes at water quality sites throughout the system
- Develop an effective tool to rapidly assess changes in vegetation and make these data available for ecosystem management

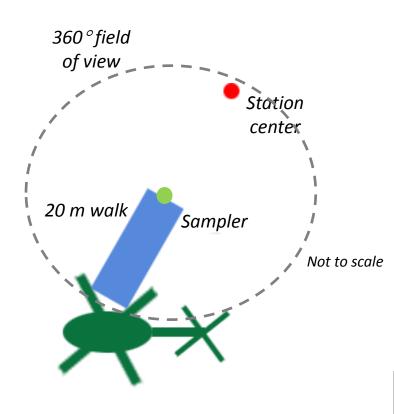
RVA Tool Benefits

- The rapid visual assessment package will result in an index that will facilitate
 - indirect assessment of station-specific and area-specific impacts
 - comparisons among management areas
 - early identification of cattail and potentially other invasive species
 - identification of declines in desirable species

Rapid Visual Assessment Tool

- Composed of two phases
 - Collection of vegetation data
 - Classification of floristic quality
 - Floristic Quality Assessment Index (FQAI)
 - Area specific index of impact (IOI) is built from data classified in the FQAI


- Technical meetings
 - Four face-to-face meetings between SFWMD and DOI representatives
 - identified basic methods for collecting vegetation information
 - demonstrated the tool used to assess station habitat quality
- Field visits
 - Three field visits to understand
 - present sampling methods
 - potential obstacles in designing consistent vegetation monitoring protocol for the EVPA network
 - SFWMD visited the Refuge twice and worked with Refuge staff
 - DOI staff visited WCA-3A and worked with SFWMD staff


- Sampling protocols established and agreed upon to date
 - Identified a suite of indicator species for the Refuge (7), WCA-2A (6), and WCA-3A (6)
 - Species indicative of impacted or unimpacted stations for each area were selected – *soil TP based*
 - The community structure and combined coverage of indicator species can be used to classify impacted or unimpacted conditions – vegetation based

- Basic protocols for sampling a station
 - walk ≥20 m from helicopter to sampling location
 - while walking towards the sampling location, identify indicator species within 1 m to either side of the sampler
 - at sampling location, collect emergent vegetation information up to 25 m with a 360° field of view
 - use check box in provided datasheet to record data
 - write-in any other species the sampler has confidence in identifying
 - bring specimens of plants thought to be exotics back to the field office for identification

- Training to identify vegetation
 - Training protocols and materials are in development
 - Each sampler will be trained to correctly identify indicator species within selected sample areas
 - Annual continued training
- Standard operating procedure (SOP) language for data collection and recording are in development

Habitat Quality Classification

- Floristic Quality Assessment Index
 - Construction and land use changes have altered the floristic quality of vegetative communities in South Florida
 - Regarding natural community conservation the FQAI is "...a powerful tool to assess the quality of natural or remnant native plant communities" (Mortellaro et al. 2009)
 - Floristic Quality Assessment Index (FQAI) was designed to assess the change in quality of these vegetation communities

Floristic Quality Assessment Index

- FQAI
 - eliminates subjectivity
 - provides a standard method for evaluating floristic conditions
 - standardizes station comparisons
- Two major factors are involved in developing the coefficients:
 - degree of fidelity with regard to a habitat
 - response to disturbance

Floristic Quality Assessment Index

 Coefficients of conservatism (CC) for South Florida flora range from 0 to 10 and fall into five guilds:

CC guild value	Criteria	
0	obligate to ruderal	
1-3	varying affinity to ruderal areas	
4-6	varying affinity to natural areas; five indicates it's obligate to natural areas; quality of area is low	
7-9	varying affinity to high quality natural areas	
10	obligate to high quality natural areas	

FQAI Applied to LOXA – Case study

- LOXA The Refuge's Enhanced Water Quality Monitoring Program
- 37 stations most located near the perimeter canals bounding the marsh
- Similar protocol to EVPA
- Early 2011, changed protocol for recording vegetation composition at LOXA stations to incorporate the FQAI
 - Streamlined data collection
 - Increased consistency and quality of collected data

FQAI Applied to LOXA

• Refuge specific taxa and coefficient of conservatism values were selected

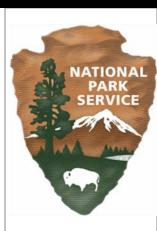
Species	Sign	СС
Bacopa carolinensis	+	8
Eleocharis elongata	+	8
Eriocaulon compressum	+	8
Nyphoides aquaticum	+	5
Xyris sp.	+	8
Polygonum spp,	-	3.5
Typha spp.	-	2

FQAI Applied to LOXA

• Defined a scale of relative plant density (RPD):

Classification	Index Value	Percent Cover
Sparse	1	<10
Moderate	2	10 - 50
Common	3	>50

- Applied coefficients in combination with densities to develop Station Specific Conservatism Values (SSCV)
- SSCVs are grouped into three categories that represent the Index of Impact (IOI)



Index of Impact

- Negative values were applied to non-desirable species
- Station specific conservatism value (SSCV)
 - □ SSCV = CC * RPD
 - CC = coefficient of conservatism
 - RPD = relative plant density
- Index of Impact (IOI)
 - Divided into three groups based on SSCV

IOI value	Description	SSCV condition	
1	Impacted	<5	
2	Moderately impacted	>=5 to <=14	
3	Non-impacted	>14	

Results

IOI value	Description	SSCV condition	
1	Impacted	<5	
2	Moderately impacted	>=5 to <=14	
3	Non-impacted	>14	

STA1W Transect

_						
	Month Year	LOXA105	LOXA106	LOXA107	LOXA108	Tracking change
	DFC (km)	0.6	1.1	2.1	3.9	over time will be
	Jul-11					
	Aug-11					based on annual
	Sep-11	-7.00			16.00	aggregated IOI's
	Oct-11	-7.00	-10.50	-3.50	8.00	for each station
S	<u>6 Transec</u>	t				
	Month Year	LOXA117	LOXA118	LOXA119	LOXA120	
*	DFC (km)	0.9	1.8	4.3	6.1	
	Jul-11	-6.00	16.00	-2.00	8.00	
	Aug-11	-6.00	16.00	3.00	13.00	
	Sep-11	-6.00	8.00	8.00	10.00	*Distance from car
	Oct-11	-6.50	3.00	7.33	7.40	Distance nom car

Tracking change over time will be based on annually aggregated IOI's

ATION

*Distance from canal

Applications

- Identify spatial and temporal vegetation dynamics
- Temporal representation of:
 - vegetation response to drying and wetting of the Refuge
 - natural variability in vegetation communities (i.e., blooming, senescence, etc.)
- Serves as one indicator of biological dynamics Settlement Agreement requirement
- Enables the exploration of vegetation community patterns with respect to changes in water quality and quantity

References

- Lopez RD, Fennessy MS 2002. Testing the floristic quality assessment index as an index of wetland condition. Ecological Applications, v12, 487-497.
- Cohen MJ, Carstenn S, Lane CR, 2004. Floristic quality indices for biotic assessment of depressional marsh condition in Florida. Ecological Applications, v14, 784-794.
- Miller SJ, Wardrop DH 2005. Adapting the floristic quality index to indicate anthropogenic disturbance in central Pennsylvanian Wetlands. Ecological Indicators, v6, 313-326.
- Mushet DM, Euliss Jr NH, Shaffer TL 2002. Floristic quality assessment of one natural and three restored wetland complexes in North Dakota, USA. Wetlands, v22, 126-138.
- Jog S, Kindscher K, Questad E, Foster B, Loring H 2006. Floristic quality as an indicator of native species diversity in managed grasslands. Natural Areas Journal, v26, 149-167.

