Revised Method for Measuring Compliance with Consent Decree Load-Reduction Requirements

W. Walker TOC Meeting June 19, 2007

Topics

- Settlement Agreement Requirements
- Alternative Yardsticks:
 - STA/Bypass Outflow Conc (1996 Method)
 - Loads Removed by BMP's/STA's (Goforth 2007)
 - Loads to Marsh vs. Historical (Proposed Here)
- Targets Based on 1994 Conceptual Plan
- Recent Data & Forecasts
- Rain-Dependent Yearly Limits
- Summary

1995 Amended Consent Decree Section 8A

"Phosphorus loads discharged from the EAA will be reduced by approximately 80% to the EVPA by October 1, 2003 and will be reduced by approximately 85% to the Refuge by February 1, 1999, as compared with mean levels measured from 1979 to 1988."

Assumed here to mean that loads to EVPA must be <=20% of historical & loads to Refuge must be <=15% of historical from sources treated under 1992 Settlement Agreement

The Arithmetic

		Refuge	EVPA
1979-1988 Load to Marsh	Mt/yr	105	205
Required Reduction	%	~ 85%	~ 80%
Load Removed	Mt/yr	89	164
Load to Marsh	Mt/Yr	16	41

1992 STA Design		Refuge	EVPA
Outflow Volume	Kac-ft/yr	211	680
Outflow Conc	ppb	50	50
Outflow Load	Mt/Yr	13	42

Alternative Compliance Methodologies - Refuge

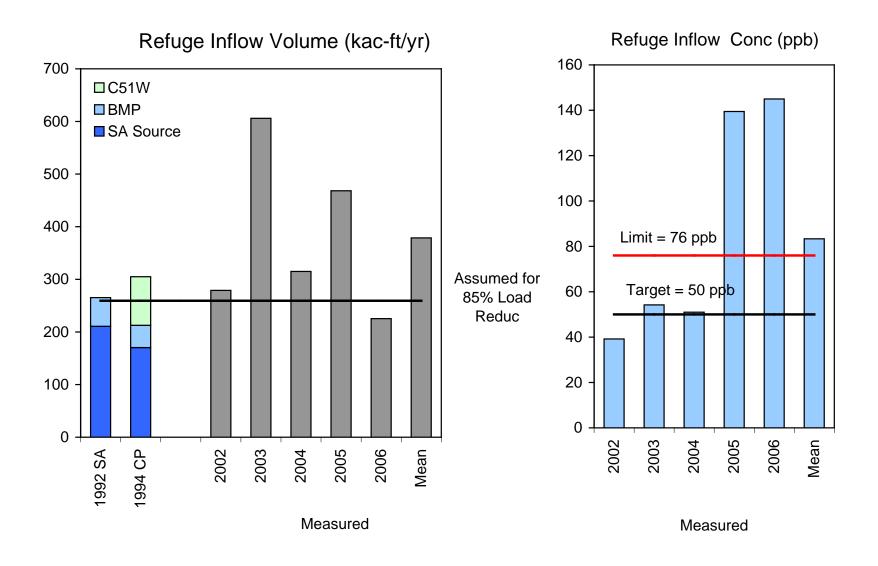
				BMP/STA	Discha	rge to Mar	sh
	Included	Excluded	Source	Removal	Flow	Conc	Load
	Sources	Sources	mt/yr	mt/yr	kac-ft/yr	ppb	mt/yr
Design Basis	1992 SA	C139	105	89	259	50	16 *
Walker 1996	1992 SA	C139	-	-	Assume <= 259	< = 50	Infer <=41
Goforth 2007	EAA	Lake, C51W, L8, 298 Dist	X	> = 89	-	-	<= X - 89
Walker 2007 a	1992 SA	Sources Added by 1994 CP	-	-	-	-	< = 16
Walker 2007 b	1994 CP	None	-	-	-	-	< = 24

^{*} Target Load = 15% of Historical Discharge to Marsh from 1992 SA Sources

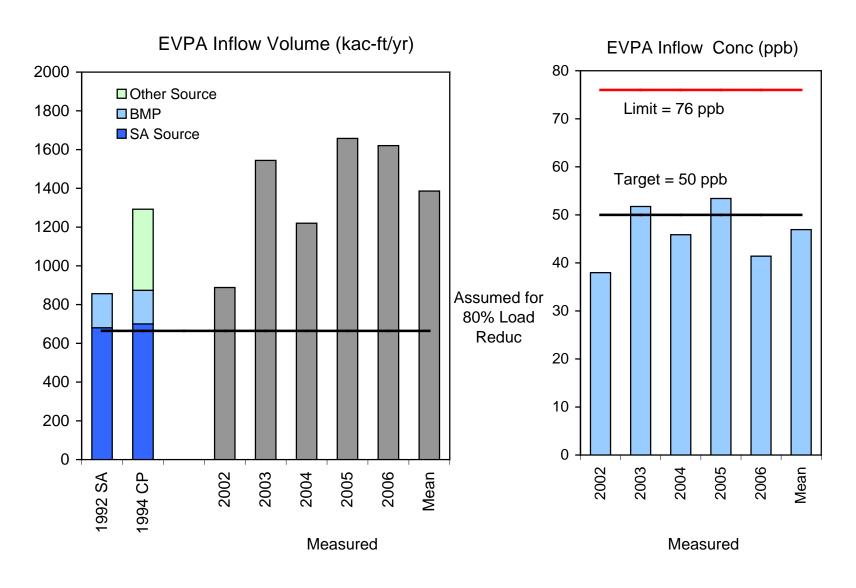
Compliance Criterion

- No Constraint

Alternative Compliance Methodologies - EVPA


				BMP / STA	Dischar	ge to Mar	sh
	Included	Excluded	Source	Removal	Flow	Conc	Load
	Sources	Sources	mt/yr	mt/yr	kac-ft/yr	ppb	mt/yr
Design Basis	1992 SA	C139	205	164	664	50	41 *
Walker 1996	1992 SA	C139	-	-	Assume <= 664	< = 50	Infer <=41
Goforth 2007	EAA	Lake, C51W, L8 C139, 298 Dist	X	> = 164	-	-	<= X - 164
Walker 2007 a	1992 SA	Sources Added by 1994 CP	-	-	-	-	< = 41
Walker 2007 b	1994 CP	None	1	-	-	-	< = 84

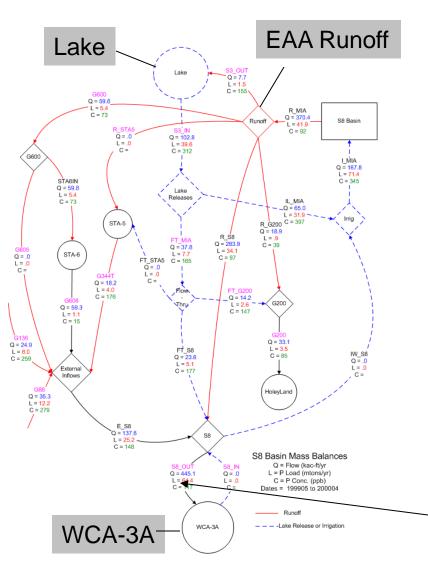
^{*} Target Load = 20% of Historical Discharge to Marsh from 1992 SA Sources


Compliance Criterion

- No Constraint

Application of 1996 Methodology to Refuge Inflows

Application of 1996 Methodology to EVPA Inflows


Demonstration of Goforth 2007 Alternative Methodology

Requirement for Refuge: Load Removed >= 89 mt/yr

Source Load Load to Marsh **Percent Reduction** of 1978-1988 Load Historical Scenario (1979-1988) BMP's 105 16 85% & STA's 89 In Compliance Hypothetical Scenario BMP's 130 40 62% & STA's 89 In Compliance

- Load removals are estimated, not directly measured.
- Model used to estimate BMP reduction not calibrated to S5A basin.
- Does not constrain loads to the marsh.
- Does not ensure future load to marsh <= 15 % of historical load.

Pasta Recipe for Estimating EAA Runoff based upon Monitoring Data

Goforth's alternative method requires yearly estimates of EAA runoff load reduction.

EAA runoff is not measured, but estimated.

Loads measured at structures reflect variety of sources.

Parsing loads to individual sources (EAA, Lake, C139, 298, etc) based upon monitoring data requires numerous assumptions.

Example for S8 Basin (Walker, 1999). computations more complex with STA's operating

Yearly load reductions are estimated from estimated runoff and rainfall model

Simpler & more reliable to base compliance on measured loads to marsh.

Parsing of WCA-1 & WCA-3 Loads – SFER 2007

WCA-1

Real Data, i.e. Measured Loads

WCA-3A

I-t-	MICA4
into	WCA1

Ctavatura	Flow	Phosphorus		
Structure	1000 ac-ft	Load (kg)	FWMC (ppb)	
G300 & G301	46.808	14007	243	
from EAA	36.828	10009		
from East Beach	2.981	1962		
from Lake	3.928	1065		
from L8 Basin	0.337	81		
From WCA1	0.030	6		
from G311	2.821	914		
Mass Balance Adjustment	-0.117	-30		
S362 (from STA-1E)	40.540	7292	146	
from EAA	31.896	5211		
from East Beach	2.582	1022		
from Lake	3.402	554		
from L8 Basin	0.292	42		
From WCA1	0.026	3		
from G311	2.443	476		
Mass Balance Adjustment	-0.102	-16		
G251 (from STA-1W)	34.187	4533	107	
from EAA	26.898	3239		
from East Beach	2.177	635		
from Lake	2.869	345		
from L8 Basin	0.246	26		
From WCA1	0.022	2		
from G311	2.060	296		
Mass Balance Adjustment	-0.086	10		
G310 (from STA-1W)	103.703	14732	115	
from EAA	81.592	10527		
from East Beach	6.604	2064		
from Lake	8.703	1120		
from L8 Basin	0.748	85		
From WCA1	0.066	7		
from G311	6.250	961		
Mass Balance Adjustment	-0.260	-31		
ACME1 (from Basin B)	14.161	1403	80	
ACME2 (from Basin B)	12.767	1832	116	
Total	252,167	43,799	141	

Structure	Flow		phorus
000000	1000 ac-ft	Load (kg)	FWMC (ppl
S140 (from L28 Canal)	203.575	12507	50
S190 (from Feeder Canal)	150.359	28717	155
L3 Borrow Canal (from C139-G409)	78.545	43306	447
STA6	26.312	848	26
S8	447.46	16964	31
From STA3/4	298.577	45158	
From Lake O	23.433	7599	
From EAA	229.987	28923	
From C-139	11.744	3710	
From STA-5	20.472	2546	
	7.249	1425	
From SFCD			
From SSDD	5.692	955	L
From diversion (G373)	57.337	6519	,
From Lake O	6.968	1285	
From EAA	11.529	927	
From C-139	1.648	531	
From STA-5	36.462	3676	
		3070	
From SFCD	0.004		
From SSDD	0.725	100	
From Rotenberger	0.922	48	
From Lake O	0.373	14	
From EAA	0.080	1	
From C-139	0.000	0	
From STA-5	0.462	33	
From SFCD	0.000	0	
From SSDD	0.006	0	
204/G205/G206 (from Holey Land)	1.726	41	
	90.710		
STA5	90.710	10218	
STA3/4 reduction		-45655	
Mass Balance Adjustment	-1.811	634	
5150	38.35	749	
from STA 3/4	25.590	3870	
From Lake O	2.008	651	
From EAA	19.711	2479	
From C-139	1.007	318	
From STA-5	1.755	218	
From SFCD	0.621	122	
From SSDD	0.488	82	
From diversion (G371)	0.340	27	
from Lake O	0.340	27	
from EAA	0.000	0	
STA3/4 reduction	0.000	-1778	
Mass Balance Adjustment	12 440		
Mass Balance Adjustment	12.419	-1370 4598	20
	104.022		36
From STA3/4	69.411	10498	
From Lake O to G409	5.448	1766	
From EAA	53.466	6724	
From C-139	2.730	863	
From STA-5	4.759	592	
From SFCD	1.685	331	
From SSDD	1.323	222	
From diversion (G373)	13.329	1767	,
From Lake O	1.620	348	
From EAA	2.680	251	
From C-139	0.383	144	
From C-139 From STA-5			
	8.477	996	
From SFCD	0.001	0	
From SSDD	0.169	27	
From Rotenberger	0.214	13	
From Lake O	0.087	4	
From EAA	0.019	0	
	0.000	0	
From C-139	0.107	9	
From C-139 From STA-5			
From STA-5	0.000	01	
From STA-5 From SFCD	0.000	0	
From STA-5 From SFCD From SSDD	0.002	0	
From STA-5 From SFCD			

1994 Conceptual Plan

- Adopted under 1995 Amended Consent Decree as plan to accomplish interim treatment goals (50 ppb)
- Expanded STA's Treating Additional Flows
 - 1979-1988 flows to EVPA treated in 1992 SA (thru S5A, S6, S7, S8, S150)
 - 1979-1988 flows to EVPA from L3 Canal/ C139 basin
 - New diversions to EVPA from EAA 298's, C51W, & additional Lake regulatory releases
- Burns & McDonnell report provides detailed accounting of flow sources & expected outflows from each STA
- Provides context for measuring compliance with load reduction requirements

1994 Conceptual Plan - Projected Loads to Marsh from Sources Treated under 1992 Settlement Agreement

Estimate	Refuge	EVPA	Notes
1994 Conceptual Plan	10.5	43.2	from data in B&M (1994) report
1994 Conceptual Plan	12.4	43.2	adjusted for S5A diversion to STA2
Target for 85/80% Reduc	15.8	41.0	15/20% of Historical Load to Marsh
1992 STA Design	13.0	42.0	from 1992 SWIM Plan, Appendix F

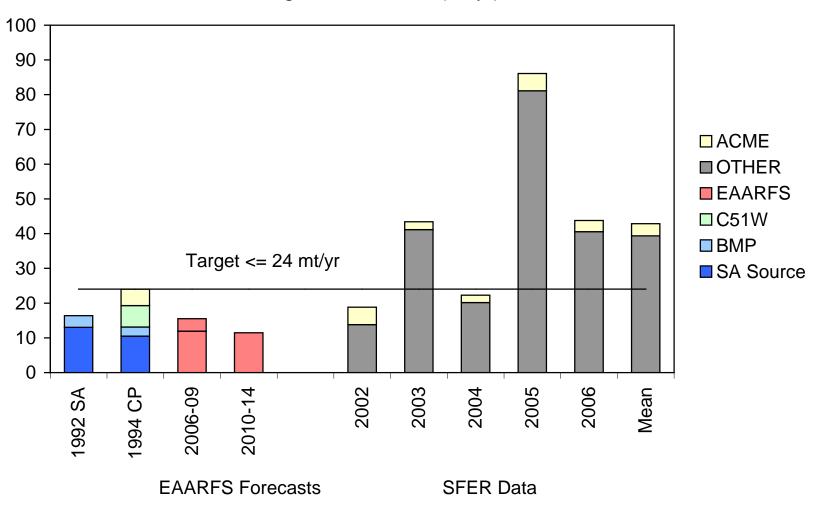
Average loads (mt/yr) under 1979-1988 hydrologic conditions

SA sources = historical flows thru S5A, S6, S7, S150, S8 treated to 50 ppb

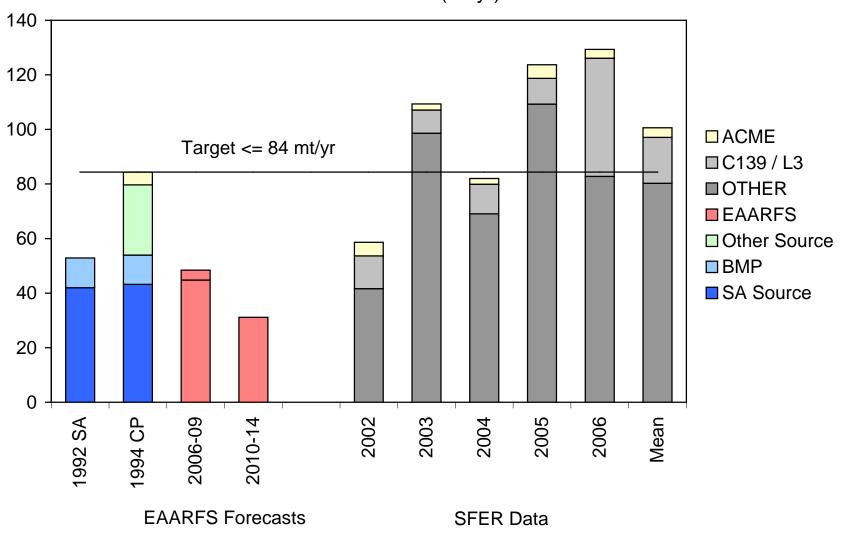
Assumption:

SA load-reduction requirements will be met if measured loads to Refuge/EVPA from all sources are similar to forecasts.

Load Allocations Based Upon 1994 Conceptual Plan

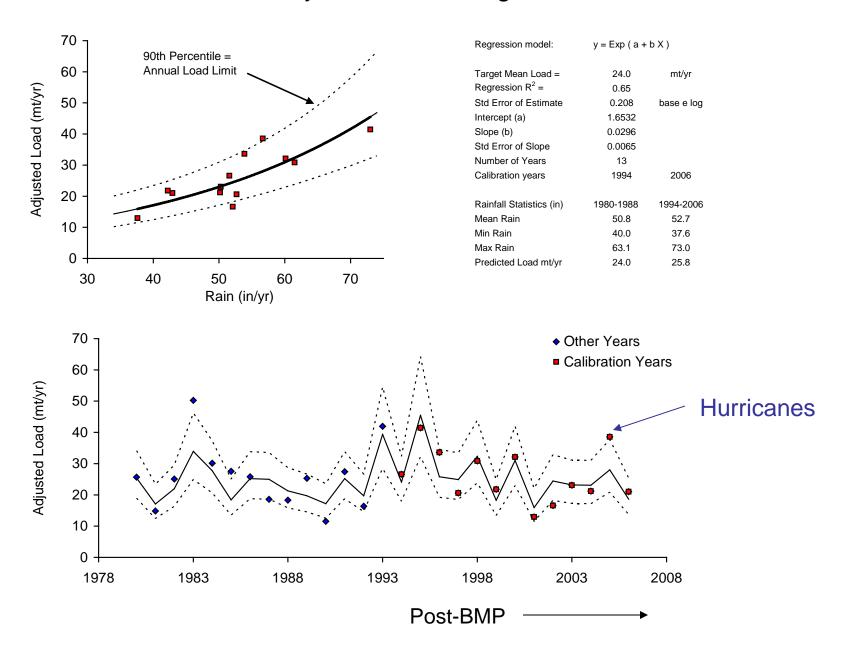

Component	Refuge	EVPA	Notes
Total STA Outflows to EVPA	16.7	68.9	Treated to 50 ppb*
From1992 SA Sources	12.4	43.2	1979-1988 thru S5A, S6, S7, S150, S8
From Other Sources	4.3	25.7	Sources not Treated in 1992 SA
Bypass/Untreated Flows	0.0	0.0	All Flows Treated, 1978-1979 Cond.
BMP Replacement	2.6	10.7	20% of Historical EAA Runoff @ 50 ppb
ACME B	4.7	4.7	Historical Mean @ 113 ppb
Total Target Load to Marsh	24.0	84.4	For Compliance Determination

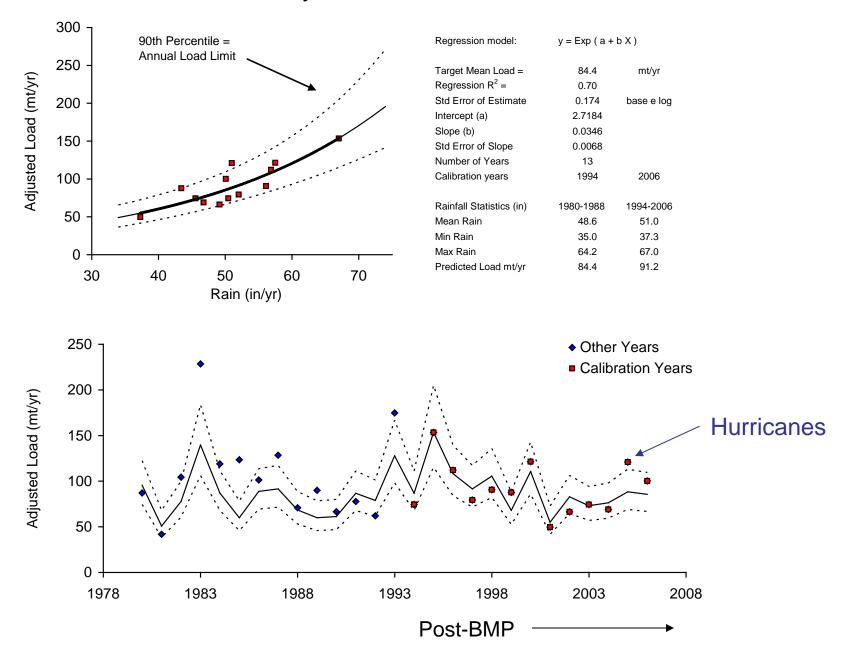
^{*} Table A-5, Burns & McDonnell (1994), adopted under 1995 Consent Decree Design basis for current operating STA's 1W, 1E, 2, 34, 5, 6.


Assumes 50% of STA-5 discharge to Rotenberger (2.7 mt/yr)

All values are long-term average loads (mt/yr) for 1979-1988 hydrologic conditions

Refuge Total P Load (mt/yr)


EVPA Total P Load (mt/yr)


Recipe for Developing Yearly Load Limits

- Compile Data from STA Inflow Sources
 - Historical Measurements, 1980 2006
 - EAARFS Model Inflows for C51W & ACME
- Correlate Loads to Rainfall
 - Calibrate to 1994-2006 data (post-BMP)
 - Test against 1980-1993 data
- Rescale predicted loads to equal target loads in WY 1980-1988 (24 mt/yr for Refuge, 84 mt/yr for EVPA)
- Set yearly limit at upper 90th percentile of predicted loads at a given rainfall
- Similar to models use for tracking BMP performance in EAA & C139 basin

Derivation of Yearly Limits for Refuge Inflow Loads

Derivation of Yearly Limits for EVPA Inflow Loads

Revised Compliance Test Summary

- Similarities to 1996 Method
- Differences from 1996 Method
- Limitations
- Potential Refinements

Revised Compliance Test Similarities to 1996 Method

- Tracks all discharges from & bypasses around STAs 1E, 1W, 2, & 34, as designed in 1994 CP
- Assumes compliance with 80/85% load reduction if data at inflows to the marsh (conc or load) are consistent with 1994 CP design.
- Does not attempt to parse out individual basin sources
- Simple to implement based directly upon SFER data
- Calibrated to historical data from STA sources
- One- & three-yr tests based on 90th & 50th percentiles
- Special provisions for hydrologic conditions outside of 1979-1988 design period and for low-flow water-supply deliveries

Revised Compliance Test Differences from 1996 Method

- Based upon load instead of concentration
- No assumptions regarding future source loads or flows; addresses major problem with 1996 method
- Provides greater assurance that future inflow loads to the Refuge from 1992 SA sources will be <=15% of 1979-1988 loads
- Provides greater assurance that future inflow loads to the EVPA from 1992 SA sources will be <=20% of 1979-1988 loads
- Includes loads from C139 & ACME-B basins, so that all external inflows to the Refuge, WCA-2A, and northern WCA3A are tracked.
- Target & limit loads adjusted for rainfall
- Yearly limits calibrated to post BMP (1994-2006) vs. pre-BMP (1979-1988) periods

Revised Compliance Test Limitations

- Accept performance vs. 1994 CP as surrogate for measuring reductions in historical load to marsh from 1992 SA sources
- Slightly different base period (May 1980-April 1988) vs. 1994 CP (Oct 1979-Sept 1988); reflecting change in Water Year definition.
- Rainfall adjustments calibrated to STA inflow sources; can be refined when sufficient STA outflow data are available.
- Potentially impacted by unusual spatial variations in rainfall (C51W/ACME/C139 vs. EAA) not experienced in 1994-2006 calibration period; can be evaluated in compliance determination.
- Seepage losses from STA's (~8% for STA1E, 7% for STA5, 36% for STA6) are ignored but may impact marsh. Allocations for measured surface outflow loads would be lower if seepage were considered.

Revised Compliance Test Potential Refinements

- Add loads from C139-Annex (<1 mt/yr) to EVPA allocation
- Assumed 50% of STA-5 outflow goes to Rotenberger vs. EVPA
- Rainfall spatial averaging & regressions
- Review allocations for BMP replacement water.
- Include or exclude hurricane year (2005) in calibration
- Parallel set of rainfall regressions for tracking inflow volumes.
- Methodology can be rescaled to track inflow loads relative to EAARFS / Long-Term-Plan forecasts
- Provisions for wet/dry years, water-supply, extreme events.