Research Associated with the 1992 Settlement Agreement

> Presentation to the Technical Oversight Committee February 2008

Dr. Sue Newman & Dr. Fred Sklar, Dir. Everglades Division

Research Objectives Specified in 1992 Settlement Agreement

1. "Numerically interpret the narrative Class III nutrient water quality criteria (i.e., the nutrient levels which cause an imbalance of flora and fauna in the units of the EPA);"

2. "Assess current and continuing responses of the EPA to nutrient input levels resulting from the efforts to achieve interim and long-term concentration limits and levels."

Research Objectives of Everglades Systems Research Division, SFWMD 1992

- 1. Conduct research to understand and predict hydrological, chemical, and ecological dynamics of the Everglades region.
- 2. Provide information and tools to decision makers for ensuring the restoration, protection, and enhancement of the Everglades.
- 3. Disseminate research findings through peerreviewed scientific literature.
- 4. Coordinate research with outside agencies.

Research Components Specified in 1992 Settlement Agreement (Appendix D)

- SA-1 Modeling Component
- SA-2 Existing Conditions Component
- SA-3 Imbalance Criteria Component
- SA-4 STA's & BMP's Components

Peer Review of Research Approach and Results

Scientific panels were created to review both the experimental design phases and the final results, e.g.

- **1. Nutrient Threshold Panel (TOC)**
- 2. South Florida Environmental Report
- 3. ELM Evaluation Panel
- 4. Peer Reviewed Publications

SA-1 Modeling Component

"Initiate, develop, collect appropriate additional data for and complete detailed modeling efforts to measure quality and quantity impacts of system operation and alternatives for the purpose of improving water quality in the Everglades system."

Examples of Numerical Modeling of the Everglades: 1) SAWCAT 2X2 Probability Model

SAWCAT Model Results

FRAGMENTATION PATTERNS IN THE EVERGLADES

FIG. 4. Simulated landscapes of 1976, 1982, 1987, 1991, and 2000. Note that the 1973 landscape was used as the initial landscape. The spatial patterns match the actual landscapes with an overall accuracy of 0.728 compared to the actual landscape in Fig. 2.

Source: Wu, Y., F.H. Sklar and K. Rutchey. 1997. Analysis and simulations of fragmentation patterns in the Everglades. Ecol. Application. 7(1):268-276

sfwmd.gov

8

Examples of Numerical Modeling of the Everglades: 2) The Everglades Landscape Model

Everglades Landscape Model (ELM)

Documentation of the Everglades Landscape Model: ELM v2.5

http://my.sfwmd.gov/eim

H. Carl Fitz¹ Beheen Trimble

South Florida Water Management District 3301 Gun Club Rd West Palm Beach, FL 33406

¹7512 Model Application Support Unit Hydrologic & Environmental Systems Modeling Dept.

July 10, 2005

ELM v2.5 Simulation- CI, TP and soil TP (Monthly 1981-2000)

SA-1 Modeling Component

- The District's 1994 research plan created a program to enhance the SFWMM and the NSM, while developing/or contributing data to new spatiallyexplicit ecosystem models including the:
- Everglades Landscape Model (ELM)
- Sawgrass/ cattail probability model (SAWCAT)
- Everglades Water Quality Model (EWQM)
- Wetlands Water Quality Model (WWQM)
- Dynamic Model for Stormwater Treatment Areas (DMSTA)
- Everglades Phosphorus Gradient Model (EPGM)

SA-2 Existing Conditions Component

"Develop a research program to determine the <u>existing conditions</u> and if additional damage to the Refuge and Park marshes has occurred due to interim delivery levels of total phosphorus or if reversal of damage are evident."

SA-2: Water Quality Monitoring throughout the Everglades Protection Area: e.g., WCA1

SA2- Continued Evaluation of Water Quality Effects

WCA1 Water Quality Survey - Conductivity

Legend

Canal (exaggerated) **Conductivity - Canal Conductivity - Marsh**

14

SA-2 Existing Conditions: Surface 0-10 cm Total Phosphorus 1992-1995

Data sources: REMAP 1999; Reddy et al., 1991,1994; DeBusk et al., 2001, S.M. Smith unpublished data; S. Newman, unpublished data Pink areas reflect locations of Stormwater Treatment Areas

SA-2 Current Conditions: Soil 0-10 cm Total Phosphorus 2003

Source: Newman, Reddy & Osborne. Publications: Grunwald et al., 2004; Corstanje et al., 2006; Bruland et al., 2006, 2007; Rivero et al., 2007

SA-2 Existing and Changing Conditions

SA-3 Imbalance Criteria Component

Develop a program that will include experimental approaches to interpret the Class III nutrient criterion regarding imbalances of flora and fauna."

SOUTH FLORIDA WATER MANAGEMENT DISTRICT SA-3 Research Program to Interpret Class III Water Quality Criteria

Approach:

- Gradient Studies
- Field Dosing Studies
 - District Mesocosms
 - FIU Flume Dosing Study
- Greenhouse & Laboratory Studies

Collaborators: DEP, USEPA, UF, FAU, LSU, FIU

SFWMD Approach to Phosphorus Threshold Research

Experimental Type	Realism	Scale	Experimental Control	Statistical Power
Natural Expts (Gradient)	High	Large	Low	Low-Moderate
Field Mesocosms	Moderate	Medium	Moderate-High	Moderate
Greenhouse Expts	Moderate-Low	Small	High	Moderate-High
Microcosm/ Laboratory Expts	Low	Small	High	High

Duration and Frequency of Phosphorus Threshold Research Program

Gradient

• 1994 , 1996, 1999

•Diel, monthly, quarterly, semiannually, annually, bi-annually

Field Mesocosms

• Dosing 1995, 1996, 1999 1-5 yrs

• Diel, weekly, bi-weekly, monthly, quarterly, semi-annually, annually

Greenhouse Expts

Months - 2 years

sfwmd.gov

Daily, weekly, monthly

Microcosm/lab Expts

- Weeks months
- Daily, weekly, monthly

Specifics of Gradient and Dosing Studies

- WCA-2A transects 1994-present.
- WCA-2A mesocosms June 1995; dosing ended April 2000. Monitored recovery through 2007.

- WCA1 transects 1996- present
- WCA1 mesocosms May 1996; dosing ended Nov 2000. Monitored recovery through 2007.
- WCA-3 and Taylor Slough transects & mesocosms Nov 1999; dosing ended Nov 2000

Chemistry

- Field/Laboratory/Internal QA/QC
 SOPs
 - •QA/QC -blanks, duplicates (triplicates, composites), spikes
- Surface and porewater analyzed by DEP using standard methods

 Soils/macrophytes-State-approved contract labs using standard methods

Fixed sites

Biology

- Periphyton Taxonomy District and DEP
 - cross training
 - permanent slide record
 - >1500 taxa
- Invertebrate Taxonomy- ID and QA/QC by DEP
 - > 400 taxa

Gradient Studies

Surface Water Phosphorus Gradients within the Everglades (Geometric Mean for Period of Record)

Vegetation Response to Phosphorus Enrichment

Vegetation Density changes along Nutrient Gradients

28

Change in Oxygen Status along Nutrient Gradients

29

Macroinvertebrate Community Composition

Summary of Ecological Changes Along the WCA2A Nutrient Gradient

Identifying Phosphorus Specific Responses

Loss of Native Periphyton Community in Response to Phosphorus in WCA2A

Recovery from Short-Term Phosphorus Enrichment: Mesocosm Studies

Porewater Nitrogen Availability Increases then Decreases in Response to Phosphorus Enrichment

Mechanisms underlying vegetation replacement

- Early regeneration seed biology
- Growth and ecophysiologyvegetative expansiom
- Recovery after leaf disturbance

Flooding Tolerance: Competitive Advantage of Cattail over Sawgrass

Blue coloration is caused by the leakage of oxygen from the roots which oxidizes the leuco-methelene blue in the rhizosphere.

Source: Chabbi et al., 2000

Sawgrass has Greater Ability to Scavenge Phosphorus when it is Limiting

Source: Kuhn et al., 2002

sfwmd.gov

Summary of Effects of P on the Everglades

Relationships between multiple measures of the structure and function of Everglades biological communities at multiple trophic levels and phosphorus enrichment.

- Periphyton:
 - Calcareous blue-green taxa eliminated
 - Abundance of phosphorus sensitive taxa decrease
 - Pollution tolerant taxa increase
- Macrophytes:
 - Increased spatial distribution of cattail
 - Loss of native sawgrass and slough vegetation
 - Decreased Eleocharis biomass and frequency
 - Increased cattail biomass and frequency
- Macroinvertebrates:
 - Altered invertebrate community structure (may be related to changes in D.O., food, habitat)
 - Reduced FI and LCI values (decreased sensitive taxa)
 - Decreased Chironomidae taxa richness
- Dissolved Oxygen:
 - Depressed dissolved oxygen regime (lower daily average and daily minimum).

Conclusions

- More Everglades biogeochemistry research has been conducted in the last 15 years than in all previous years combined.
- There was a significant shift from grey literature to peer-reviewed articles after the Settlement Agreement.
- The SFWMD created the organizational structure, resources, and staff to fully implement the TOCapproved 1994 Everglades Research Plan.
- The quality of the Everglades research was found to be critical for: 1) establishing a P-associated definition of imbalance, 2) describing existing conditions, 3) separating hydrologic impacts from P impacts, and 4) demonstrating the importance of periphyton

Acknowledgements

- Everglades Division- SFWMD
- Florida Department of Environmental Protection
- US EPA- Gulf Breeze
- University of Florida
- Florida International University
- A.R.M. Loxahatchee Wildlife Refuge
- Everglades National Park
- Miccosukee Tribe
- Florida Atlantic University