SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Everglades Agricultural Area Storage Reservoir Feasibility Study

December 21, 2017

Meeting Agenda

- Welcome and Introductions
- Project Schedule
- Modeling Results
- Project Benefits
- Next Steps
- Public Comment

Project Schedule

EAA Reservoir Timeline

Project Opportunities and Objectives

- Reduce the high-volume freshwater discharges from Lake Okeechobee to the Northern Estuaries
- Identify storage, treatment and conveyance south of Lake
 Okeechobee to improve flows to the Everglades system
- Reduce ongoing ecological damage to the Northern Estuaries and Everglades system

St. Lucie Inlet

Greater Everglades 9,541 Florida Bay 9,100 **Total HU Lift** 20,810 sfwmd.gov

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

How Modeling Fits into Project Planning

First Phase: Screening Modeling to Assist in Selection and Sizing of Features that will be Evaluated in More Detail Second Phase: Detailed Modeling of a Variety Second Phase: Detailed Modeling of a Variety Second Phase: Detailed Modeling of a Variety Second Phase: Detailed Modeling of a Variety

Detailed Modeling of a Variety of Options to Determine how to Route Water to Achieve Desired Project Benefits Incorporating Feedback and Information Gained in Earlier Steps, Refine Detailed Modeling of a Highly Performing Option

Along this path, there are many opportunities for refinement. Intermediate products serve the immediate need and then are enhanced, incorporating feedback and information as the process progresses.

Modeling Scenarios

- R240 = 240 kac-ft reservoir + A1 FEB (configuration A or B)
 - Reservoir is ~ 10,100 acres effective area and ~ 23 ft depth (levee side-slopes accounted for in storage calculation)
 - 6,500 acre STA
- R360 = 360 kac-ft reservoir (no A1 FEB) (configuration C or D)
 - Reservoir is ~ 19,700 acres effective area and ~ 18 ft depth (levee side-slopes accounted for in storage calculation)
 - 11,500 acre STA
- C360 = 360 kac-ft reservoir (no A1 FEB)
 - Same as R360, but reservoir can also serve multiple purposes as identified in CERP Component G

Example RSM model setup and flow routing diagram for a potential EAA Storage Reservoir concept

Detailed view in the vicinity of the A1 & A2 parcels displayed; does not show entire model domain or study area

Stage Duration Curves for Lake Okeechobee

RSMBN P.O.S. 1965 - 2005

Filename: lok dai stgdur.agr

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Number of times Salinity Envelope Criteria NOT Met for the St. Lucie Estuary (mean monthly flows 1965 - 2005)

Number of times Salinity Envelope Criteria NOT Met for the Calooshatchee Estuary (mean monthly flows 1965 - 2005)

sfwmd.gov

All alternatives show reduced number of high discharge events to the Northern Estuaries that are caused by Lake Okeechobee

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Water Year (Oct-Sep) LOSA Demand Cutback Volumes

for the 8 Years in Simulation Period with Largest Cutbacks

EAA Storage Reservoir Modeling Data

Modeling data is available via ftp at:

ftp://ftp.sfwmd.gov/pub/EAASR/

Link can also be found on <u>www.sfwmd.gov/EAAreservoir</u>

Ecological Benefits Expected

- Reduce Lake Okeechobee damaging discharges to the northern estuaries
 - Caloosahatchee and St. Lucie Estuary Flow Targets
- Increase flow to water conservation areas and Everglades National Park
 - Sheetflow in the Ridge and Slough landscape
- Improve wetland hydroperiod
 - Inundation duration in the Ridge and Slough landscape

Ecological Benefits = Habitat Units (HU)

- USACE process
- Applied nation-wide for National Ecosystem Restoration
- Calculates environmental quality over an area, in acres, to describe environmental lift and to provide a standardized measure to compare alternatives
- Utilizes USACE Ecosystem Planning Center of Expertise approved and certified CEPP Planning Model

Summary of Performance Measures (CEPP)

Planning Region	Performance Measure	Description
Northorn Estuarios	Salinity envelope St. Lucie	Suitability for oyster and submerged aquatic vegetation habitat based on frequency of flows from S-80
Northern Estuaries	Salinity envelope Caloosahatchee	Suitability for oyster and submerged aquatic vegetation habitat based on frequency of flows from S-79
Greater Everglades	Hydrologic surrogate for soil oxidation	Cumulative drought intensity to reduce exposure of peat to oxidation
	Inundation pattern in Greater Everglades Wetlands	Number and duration of inundation events used to calculate the percent period of record of inundation
	Number and duration of dry events in Shark River Slough	Number of times and mean duration in weeks that water drops below ground
	Sheet flow in the Everglades Ridge and Slough Landscape	Timing, distribution and continuity of sheet flow across the landscape
	Slough vegetation suitability	Hydrologic suitability for slough vegetation (hydroperiod, dry-down, dry and wet season depths)
Florida Bay	Salinity in FL Bay (dry and wet season)	Frequency of harmful high salinity and the magnitude of deviation from a pre-drainage salinity targets

Habitat Units are a Measure of Ecological Benefits

<u>HABITAT UNITS - USACE Methodology</u> Methodology for quantifying ecological benefits on the array of alternatives

St. Lucie Estuary

14,994 acres

 Maximum acres of habitat impacted by watershed and lake flows based on hydrodynamic salinity models, therefore maximum area of potential improvements from the project

Habitat Units are a Measure of Ecological Benefits

<u>HABITAT UNITS - USACE methodology</u> Methodology for quantifying ecological benefits on the array of alternatives

Caloosahatchee Estuary

70,979 acres

 Maximum acres of habitat impacted by watershed and lake flows based on hydrodynamic salinity models, therefore maximum area of potential improvements from the project

St. Lucie Estuary Performance Measure

All Alternatives show reduced numbers of high flow discharges as compared to FWO

Number of times Salinity Envelope Criteria NOT Met for the St. Lucie Estuary (mean monthly flows 1965 - 2005)

St. Lucie Estuary Performance Measure

Discharges > 2000 cfs for >42 consecutive days (3 back to back 14 day periods) reduced from 9 events in FWO to 4 events in all alternatives

Caloosahatchee Estuary Performance Measure

All Alternatives show reduced number of high flow discharges as compared to FWO

Number of times Salinity Envelope Criteria NOT Met for the Calooshatchee Estuary (mean monthly flows 1965 - 2005)

Caloosahatchee Estuary Performance Measure

Discharges >2800 cfs for 60 consecutive days reduced from 9 in FWO to 6-7 events in all Alternatives

Northern Estuaries Habitat Units

NE Habitat Units	Modeling Scenarios					
Project Region (Zone)	Existing Condition	FWO	R240	R360	C360	
Caloosahatchee Estuary (CE-1)	2,839	39,038	40,458	41,168	41,878	
St Lucie Estuary (SE-1)	1,349	8,247	8,996	9,446	9,446	
Total Northern Estuaries	4,188	47,285	49,454	50,614	51,324	

Northern Estuaries Habitat Unit Lift

NE Habitat Units	Modeling Scenarios				
HU Lift Project Region (Zone)	R240	R360	C360		
Caloosahatchee Estuary (CE-1)	+1,420	+2,130	+2,840		
St Lucie Estuary (SE-1)	+749	+1,199	+1,199		
Total Northern Estuaries	+2,169	+3,329	+4,039		

RSM Model Mesh

RSM Zones:			34.5
		_	JA-J
	JA-INE		3B
	3A-NW		ENP-N
•	3A-MC		ENP-S
	3A-C	•	ENP-SE

HABITAT UNITS - USACE methodology Methodology for quantifying ecological benefits on the array of alternatives

Greater Everglades Indicator Regions, Zones and Transects

1,076,248 acres

Indicator region - Depth, distribution and duration of surface flooding

Transects - timing and distribution of flows

Transect Flows: Downstream of the "redline"

171

- Flows distributed 2/3rd to WCA 3A-NW and 1/3rd to WCA 3A-NE
- 2) Alternatives increase average annual flows by approx. 66,000 ac-ft in the NW and 28,000 ac-ft in the NE.

123A

T23

125

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Hydroperiod Performance Measure Dry Year (1989)

<u>sfwmd.gov</u>

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Transect Flows: Downstream of the "blueline"

Transect Flows: Downstream of the "blueline"

Greater Everglades Habitat Units

GE Habitat Units	Modeling Scenarios					
Project Region (Zone)	Existing Condition	FWO	R240	R360	C360	
Northeast WCA 3A (3A-NE)	44,451	91,372	91,372	92,606	92,606	
WCA 3A Miami Canal (3A-MC)	32,847	54,746	56,310	56,310	56,310	
Northwest WCA 3A (3A-NW)	30,970	54,198	55,606	55,606	55,606	
Central WCA 3A (3A-C)	108,414	111,159	111,159	111,159	111,159	
Southern WCA 3A (3A-S)	69,247	68,423	69,247	69,247	69,247	
WCA 3B (3B)	55,697	59,125	59,982	59,982	59,982	
Northern ENP (ENP-N)	57,557	97,596	100,098	100,098	100,098	
Southern ENP (ENP-S)	124,068	169,400	171,786	174,172	174,172	
Southeast ENP (ENP-SE)	79,711	83,764	83,764	83,764	83,764	
Total Greater Everglades	602,962	789,783	799,324	802,944	802,944	

Greater Everglades Habitat Unit Lift

GE Habitat Units	Modeling Scenarios			
Project Region (Zone)	R240	R360	C360	
Northeast WCA 3A (3A-NE)	0	+1,234	+1,234	
WCA 3A Miami Canal (3A-MC)	+1,564	+1,564	+1,564	
Northwest WCA 3A (3A-NW)	+1,408	+1,408	+1,408	
Central WCA 3A (3A-C)	0	0	0	
Southern WCA 3A (3A-S)	+824	+824	+824	
WCA 3B (3B)	+857	+857	+857	
Northern ENP (ENP-N)	+2,502	+2,502	+2,502	
Southern ENP (ENP-S)	+2,386	+4,772	+4,772	
Southeast ENP (ENP-SE)	0	0	0	
Total Greater Everglades	+9,541	+13,161	+13,161	

Florida Bay: Max Salinity Perf. Measure (0-1 Scale)

Florida Bay Wet Season Salinity:

Florida Bay Habitat Units

FB Habitat Units	Modeling Scenarios					
Project Region (Zone)	Existing Condition	FWO	R240	R360	C360	
Florida Bay West (FB-W)	23,700	41,100	44,200	44,200	44,200	
Florida Bay Central (FB-C)	8,200	13,950	15,600	15,600	15,600	
Florida Bay South (FB-S)	16,600	28,300	30,300	30,300	30,300	
Florida Bay East Central (FB-EC)	22,000	34,300	36,100	36,900	36,900	
Florida Bay North Bay (FB-NB)	2,150	2,660	2,790	2,790	2,790	
Florida Bay East (FB-E)	9,060	9,820	10,200	10,200	10,200	
Total Florida Bay	81,700	130,100	139,000	140,000	140,000	

Note: Florida Bay Habitat Unit modeling performed by Everglades National Park

stwmd.gov

Florida Bay Habitat Unit Lift

FB Habitat Units	Modeling Scenarios		
Project Region (Zone)	R240	R360	C360
Florida Bay West (FB-W)	+3,100	+3,100	+3,100
Florida Bay Central (FB-C)	+1,650	+1,650	+1,650
Florida Bay South (FB-S)	+2,000	+2,000	+2,000
Florida Bay East Central (FB-EC)	+1,800	+2,600	+2,600
Florida Bay North Bay (FB-NB)	+130	+130	+130
Florida Bay East (FB-E)	+380	+380	+380
Total Florida Bay	+9,100	+9,900	+9,900

Habitat Unit Lift Summary above FWO

Regions	Modeling Scenarios			
Project Region (Zone)	R240	R360	C360	
Northern Estuaries	2,169	3,329	4,039	
Greater Everglades	9,541	13,161	13,161	
Florida Bay	9,100	9,900	9,900	
Total Habitat Unit Lift	20,810	26,390	27,100	

Plan Capital Cost \$1.82B – CEPP New Water Component \$0.40B = Capital Cost to Implement Plan \$1.42B

(1)Includes Reservoir, Stormwater Treatment Area, Canal Conveyance Improvement, Recreation Plan and Real Estate Costs
 (2)Includes CEPP A2 FEB and A2 Recreation Plan
 Note: all costs are in 2018 dollars

Plan Capital Cost \$1.84B – CEPP New Water Component \$0.40B = Capital Cost to Implement Plan \$1.44B

(1)Includes Reservoir, Stormwater Treatment Area, Canal Conveyance Improvement, Recreation Plan and Real Estate Costs
 (2)Includes CEPP A2 FEB and A2 Recreation Plan
 Note: all costs are in 2018 dollars

Plan Capital Cost \$2.29B – CEPP New Water Component \$0.40B = Capital Cost to Implement Plan \$1.89B ⁽¹⁾Includes Reservoir, Stormwater Treatment Area, Canal Conveyance Improvement, Recreation Plan and Real Estate Costs ⁽²⁾Includes CEPP A2 FEB and A2 Recreation Plan

Note: all costs are in 2018 dollars

Plan Capital Cost \$2.35B – CEPP New Water Component \$0.40B = Capital Cost to Implement Plan \$1.95B

(1)Includes Reservoir, Stormwater Treatment Area, Canal Conveyance Improvement, Recreation Plan and Real Estate Costs
 (2)Includes CEPP A2 FEB and A2 Recreation Plan
 Note: all costs are in 2018 dollars

Plan Capital Cost \$2.29B – CEPP New Water Component \$0.40B = Capital Cost to Implement Plan \$1.89B

⁽¹⁾Includes Reservoir, Stormwater Treatment Area, Canal Conveyance Improvement, Recreation Plan and Real Estate Costs ⁽²⁾Includes CEPP A2 FEB and A2 Recreation Plan Note: all costs are in 2018 dollars

Next Steps

- Submit report to Legislature on or before January 9, 2018
- Prepare Draft Post Authorization Change Report/Feasibility Report
- Submit Post Authorization Change Report to ASA – March 30, 2018

Public Comment Opportunities

- Public Comment Cards
- Email Address <u>EAAreservoir@sfwmd.gov</u>
- Mailing address:

Mike Albert, Project Manager South Florida Water Management District 3301 Gun Club Road, MSC 8312 West Palm Beach, FL 33406

 Additional information available at <u>www.sfwmd.gov/EAAreservoir</u>

DISCUSSION

www.sfwmd.gov/EAAreservoir

