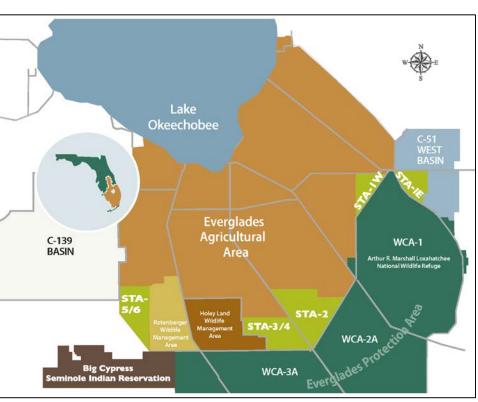
Periphyton-based Stormwater Treatment Area (PSTA) Water and Total Phosphorus Budget Analyses


Long-Term Plan Communications Meeting

September 4, 2015

Hongying Zhao, Ph.D., P.E., Tracey Piccone, P.E., Manuel Felipe Zamorano
Applied Sciences Bureau
SFWMD

5fwmd.gov Restoration Strategies for clean water for the Everglades

Project Location

57,000 acres of treatment area

PSTA Cell in STA-3/4

100-acre study site

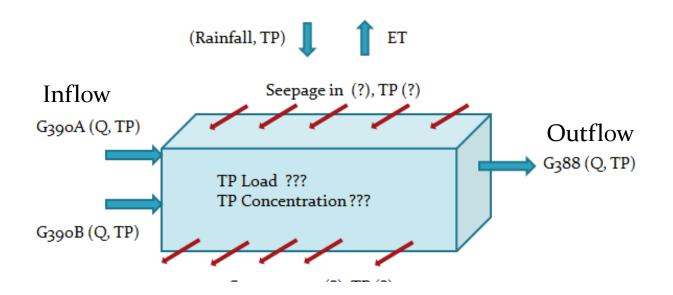
Background and Objective

Background

- PSTA cell achieves very low outflow TP (8-13 ppb)
- Purpose of PSTA Study is to assess bio-geochemical characteristics and operational factors contributing to PSTA Cell's performance
- Lessons learned for potential further PSTA implementation

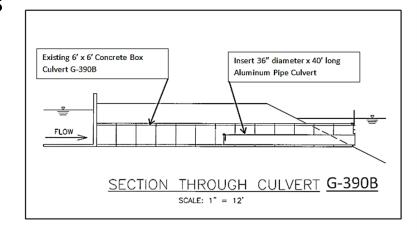
Objective of this task:

Evaluate PSTA Cell's performance through improved water and TP budget analyses


PSTA Cell

PSTA Cell Water and TP Budget Equations

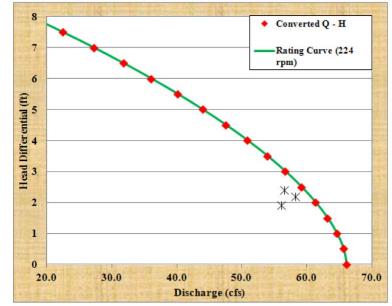
ightharpoonup Water Budget G-390A + G-390B + R – G-388 + seepage - ET - ΔS = ε


> TP Budget

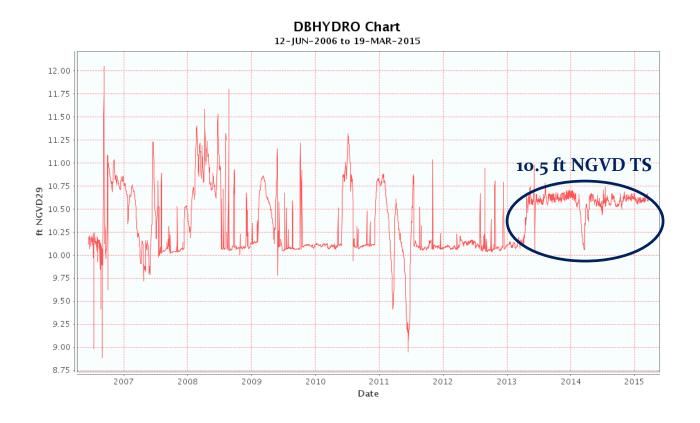
 $\Delta TP = TP Load_{G390A+G390B} + TP Load_{Rain} + TP Load_{seepage in} - TP Load_{seepage out} - TP Load_{G388}$

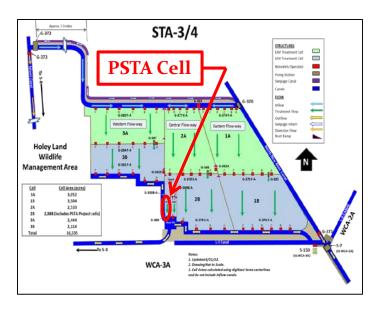
Inflow Culvert Flow Estimate Improvements

- Improved inflow culvert flow estimates for May 2007 to December 2010
- Installed 36-inch diameter aluminum pipe inside existing 6-foot by 6-foot concrete box culvert (2011)
- Developed new flow rating equation



Outflow Pump Flow Estimate Improvements

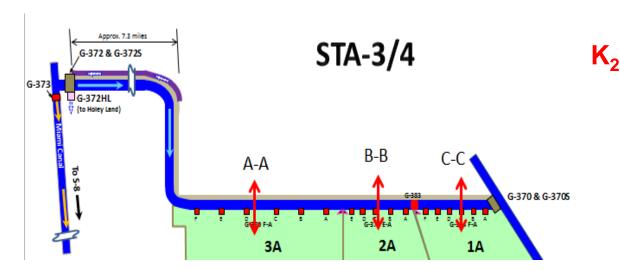

- Oversized pumps with frequent on/off cycling produced large errors in flow estimates
- Reduced pump speed from 350 to 224 rpm
- Developed improved flow rating equation

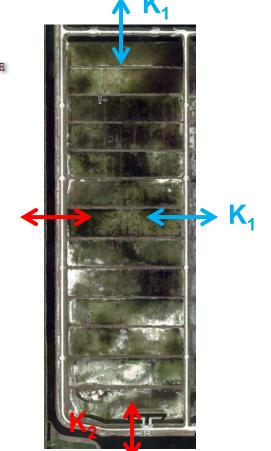


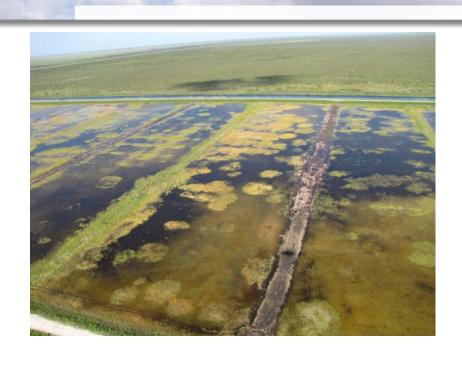
Operational Change

- In April 2013, the target stage was increased from 10.0 to 10.5 ft NGVD
 - Average depths increased from 1.2 ft to 1.7 ft.

- North and East levees constructed as part of PSTA project
- South and West levees constructed as part of STA-3/4 according to a higher standard

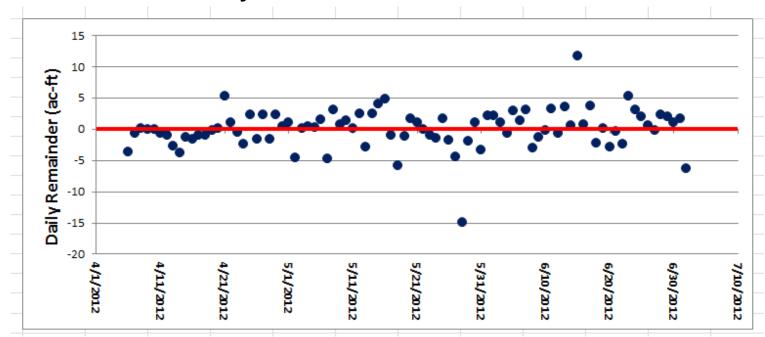



Seep2D model for STA-3/4 levee seepage by Sangoyomi et al. (2011)


Calibrated seepage coefficients: 1.3, 2.2 and 2.0 cfs/ft/mi for cross-sections A-A, B-B, C-C

Average value of 1.8 cfs/ft/mi (K₂)

Seepage coefficient (K₁) for North and East PSTA Cell levees was calibrated in this analysis

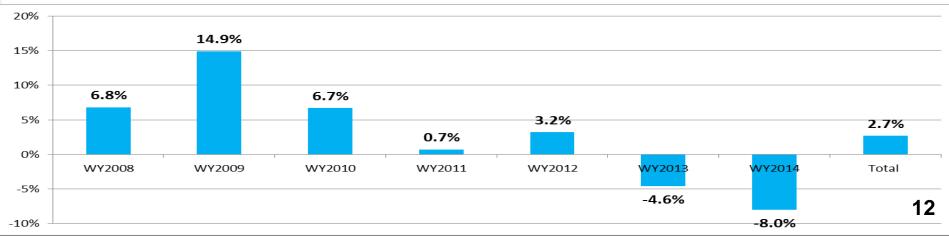


Calibration period: April 6 to July 2, 2012

- Inflow culverts were closed (no inflow)
- G-388 was under normal operation to maintain cell target stage

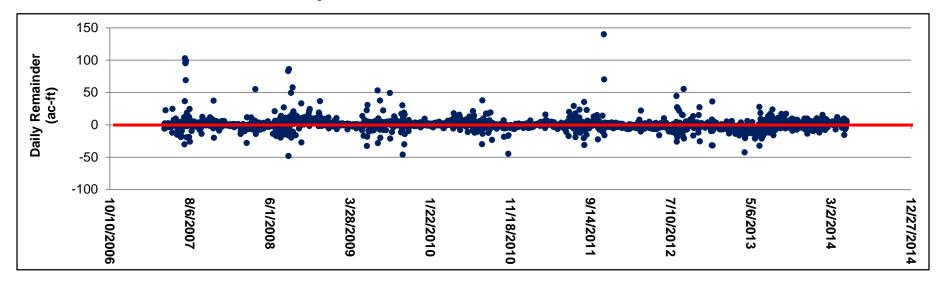
Average remainder: 0.04 ac-ft

Median: 0.09 ac-ft

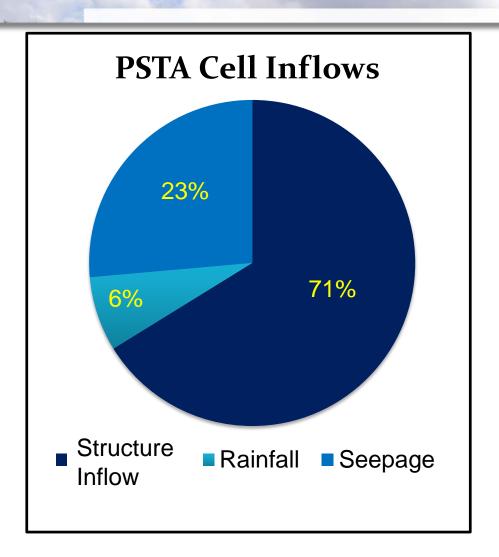

Standard error: 0.3 ac-ft

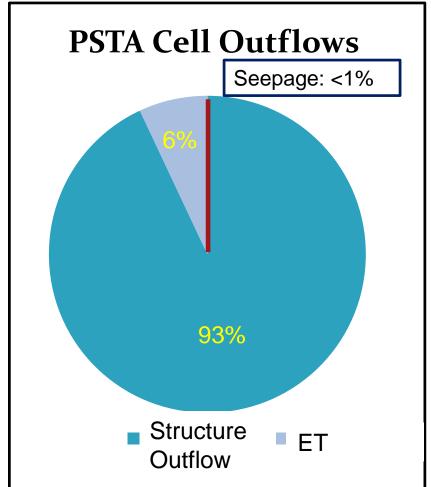
Calibrated seepage coefficient (K₁) for

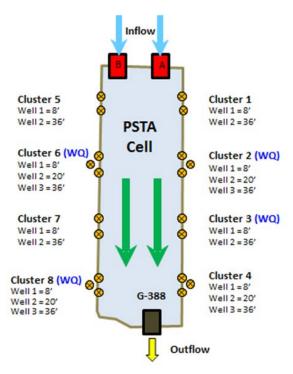
North and East levees: 6.0 cfs/ft/mi


PSTA Cell Water Budget Summary

WY	Culvert Inflow (ac-ft)	Seepage In (ac-ft)	Rain (ac-ft)	Total Inflow (ac-ft)	Pump Outflow (ac-ft)	Seepage out (ac-ft)	ET (ac-ft)	Total Outflow (ac-ft)	Change in Storage (ac-ft)	Remainder (ac-ft)	error %
2008	2,922	1,821	402	5,145	4,905	31	446	5,382	119	355	6.8
2009	3,298	2,108	448	5,854	6,405	2	458	6,864	-66	945	14.9
2010	7,020	2,339	504	9,864	10,080	17	448	10,545	-7	675	6.7
2011	3,289	8,85	340	4,515	3,965	124	464	4,554	-9	30	0.7
2012	7,452	2,122	431	10,005	9,848	29	453	10,331	-7	318	3.2
2013	9,322	2,436	516	12,275	11,219	12	450	11,681	32	-561	-4.6
2014	4,030	432	413	4,875	3,794	236	449	4,479	20	-376	-8
TOTAL	37,334	12,144	3,054	52,533	50,216	450	3,169	53,835	82	1,385	2.7

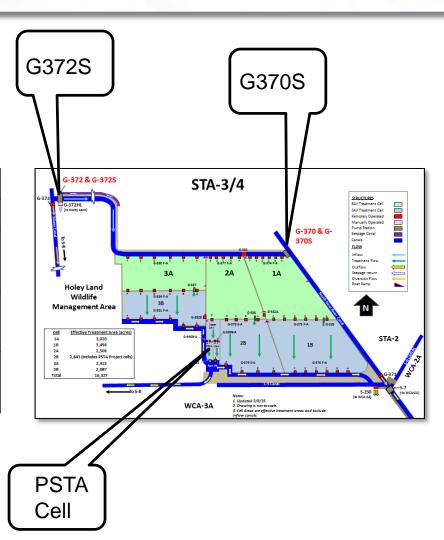

PSTA Cell Water Budget Summary


Daily Remainder Distribution


- Mean (0.54 ac-ft)
- Median (0.37 ac-ft)
- > Standard Error (0.18 ac-ft)
- > 75% of time, absolute value of remainder is less than 5 ac-ft, equivalent to 0.6 inch depth in the cell

PSTA Cell Water Budget Summary

PSTA Well Water Quality Data



- Number of samples: 27
- Range: 3 to 64 ppb
- Median TP concentration 10 ppb
- Average TP concentration 19 ppb

G370S and G372S Seepage Water Quality

	Site G370S	Site G372S
Sample number	682	636
Average TP concentration (ppb)	8	12
Median TP concentration (ppb)	11	10
5 percentile TP concentration (ppb)	7	7

PSTA Cell Phosphorus Mass Balance

Base Scenario:

- Rainfall TP: 6 ppb (wet deposition)
- Seepage In TP: 10 ppb
 - Median of PSTA Well Data and G-370S/G-372S
- Seepage Out TP: Average of inflow and outflow structures

PSTA Cell Performance Evaluation

 $\Delta TP \% = TP load reduction \% = (TP Load_{in} - TP Load_{out}) / TP Load_{in} * 100%$

ΔTP FWMC % = TP FWMC reduction % = (FWMC_{in} - FWMC_{out}) / FWMC_{in} * 100%

PSTA Cell TP Mass Balance (Using Seepage In TP Concentration of 10 ppb)

- Structure Inflow TP concentration range: 14 to 27 ppb
- With the effect from the seepage:
 The surface flow TP concentration ranged from 12 to 21 ppb

- Load reduction percentage
 - >ranged from 20% to 50%;
 - **≻annual average: 34%**
- Concentration reduction percentage
 - >ranged from 19% to 41%;
 - **≻annual average: 31%**

Sensitivity Analyses

➤ Seepage In TP: 7 ppb and 19 ppb (10 ppb Base)

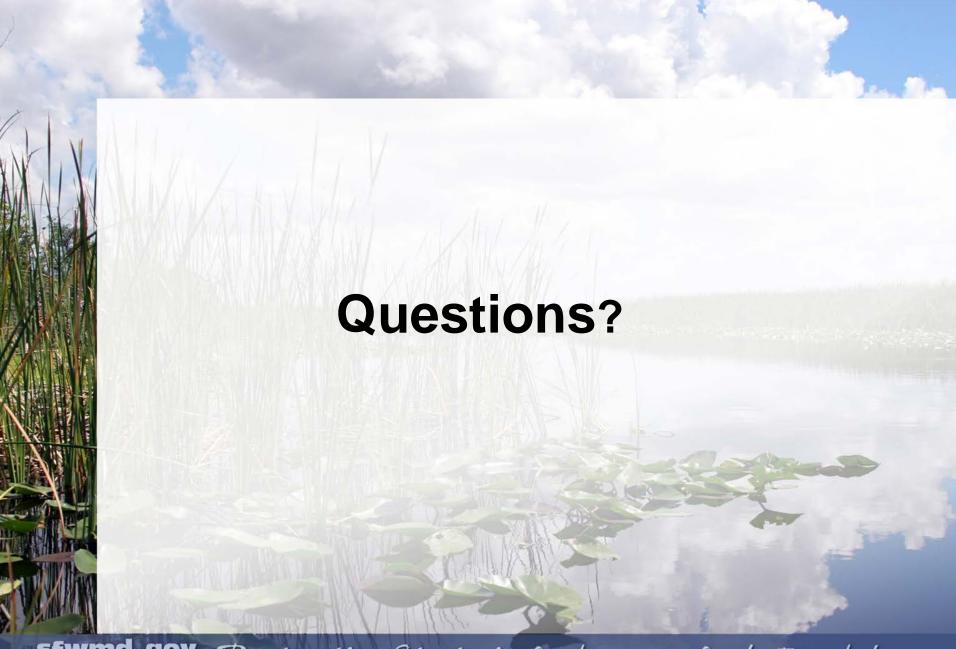
➤ Rainfall TP: 3 ppb and 9 ppb (6 ppb Base)

	Annual Average Values Based on 7 years of data								
	Base Value	$K_1 = 6.0, K_2 = 1.8$ Seepage = 10 ppb		$K_1 = 6.0, K_2 = 1.8$ Rainfall = 6 ppb					
Parameter	$K_1 = 6.0$		Rainfall TP = 9 ppb (+50%)	Seepage TP = 7 ppb	Seepage TP =				
	K ₂ = 1.8	 Rainfall TP = 3 ppb (-50%)							
	Rainfall TP=6 ppb Seepage TP=10 ppb	(30,0)	(10070)	(-30%)	(+90%)				
TP Load Reduction (%)	34%	33%	35%	31%	42%				
TP FWMC reduction (%)	31%	30%	32%	28%	39%				

Summary

- 7-year annual average water budget error: < 3%</p>
- 7-year period:
 - ➤Inflow: 71% surface flows, 23% seepage, 6% rainfall
 - ➤ Outflow: 93% structure flow, 6% ET, <1% seepage

7-year TP reduction using Seepage Concentration of 10 ppb


- **≻Load reduction percentage: 34%**
- **➤** Concentration reduction percentage: 31%

PSTA performance results were not sensitive to rainfall TP concentration but were sensitive to the seepage TP concentration

During the 7-year period, PSTA Cell produced annual outflow FWM TP concentrations at or below 13 ppb

Recommendations

- Continue water quality sampling at the wells located along the West and East levees
- Conduct an additional seepage calibration test with inflow gates closed to reflect conditions under the current target stage (10.5 ft. NGVD)
- Update the water and TP budget analyses annually

