

Periphyton Stormwater Treatment Area (PSTA) and Phosphorus Mesocosm Research Studies

10th Annual Public Meeting on the Long-Term Plan for Achieving Water Quality Goals for Everglades Protection Area Tributary Basins

Delia Ivanoff

Sr. Supervising Environmental Scientist Water Quality Treatment Technologies Section

Presentation Outline

STA-3/4 PSTA Project

- Brief introduction about the PSTA project and its longterm performance
- Overview of the PSTA research plan
- Improvement in PSTA water budget
- Preliminary assessment of PSTA P mass balance
- Short-term trend in P concentration
- Role of enzymes, UV radiation, macrophytes, and calcareous periphyton in PSTA treatment

Phosphorus Mesocosm Study

- Objectives
- Description
- Initial findings

PSTA Project Location

sfwmd.gov

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Outflow Phosphorus Concentrations: PSTA vs. Well-performing STA Cells*

While SRP removal is comparable among cells, PSTA outperforms other well-performing cells in terms of dissolved organic P (DOP) and particulate P (PP) removal

*Period of record results from grab samples where SRP, TDP, and TP were analyzed (PSTA: 10/2006 – 1/2013; STA-2: 10/2006-1/2013; STA-3/4: 9/2006-1/2013)

PSTA Research Plan

Transect Row & Column

Α

В

С

D

Е

F

G

Η

J

K

Μ

PSTA Sampling Locations

Surface Water

- TP, TSP, SRP, DOC, UV absorbance, alkaline phosphatase activity, calcium, sulfate, NH₄, NOx, TKN,
 - TP, TSP, SRP, DOC, UV absorbance Total P only
 - Remote P analyzer

Vegetation and Sediment

Semi-quantitative SAV cover & floc depth

Sediment, SAV and periphyton chemistry, SAV biomass, periphyton APA

Periphytometer deployment

Hydraulic and hydrology

- O Internal stage recorder
- **Seepage water level**
- **Seepage water quality**

PSTA Cell Water Budget (POR)

With structural improvements, the water budget uncertainty was reduced.

Water Year	Inflow G390A&B (ac-ft)	Net Seepage (ac-ft)	Rain (ac-ft)	G388 Outflow (ac-ft)	ET (ac-ft)	Change in Storage (ac-ft)	Remainder (ac-ft)	Remainder %
2008	2,922	1,840	562	5,200	491	131	498	9
2009	3,298	2,229	452	6,587	504	-73	1,038	15.9
2010	7,020	2,395	627	10,076	494	-8	521	5.1
2011	3,289	785	409	3,973	511	-9	-8	-0.1
2012	7,462	2,181	536	9,826	500	-8	139	1.4

PSTA Cell Water Budget

Well Sampling

	Inflow		
	B A		
Cluster 5 Well 1 = 8' Well 2 = 36'	PSTA	Cluster 1 Well 1 = 8' Well 2 = 36'	
Cluster 6 (WQ) Well 1 = 8' Well 2 = 20' Well 3 = 36'		Cluster 2 (WQ) Well 1 = 8' Well 2 = 20' Well 3 = 36'	
Cluster 7 (WQ) Well 1 = 8' Well 2 = 36'		Cluster 3 (WQ) Well 1 = 8' Well 2 = 36'	≻ Qu Fel
Cluster 8 Well 1 = 8' Well 2 = 36'	G-388	Cluster 4 Well 1 = 8' Well 2 = 20' Well 3 = 36'	Fol froi sar

Outflow

- Quarterly sampling was initiated in February 2012
- Four 8-foot wells and four 36-foot wells from 4 clusters (2, 3, 6 and 8) were sampled
- Tested for TP (for seepage P values) and major ions (seepage source estimation)

Performance Analysis*

Based on a median seepage TP value of 17 ppb, the estimated TP load reduction and TP concentration reduction are ~40%.

Water	Total Inflow (G390A+G390B + Rainfall + Seepage) (ac-ft)	Structural			Based on Median Seepage TP		
Year		Inflow TP FWMC (G390A + G390B) (ppb)	Outflow (G388) (ac-ft)	Outflow FWMC (G388) (ppb)	Total Inflow FWMC (ppb)	TP Load Reduction	Concentration Reduction
2008	5,324	27	5,200	12	22	56%	44%
2009	5,979	14	6,587	8	15	57%	45%
2010	10,042	20	10,076	10	18	53%	45%
2011	4,483	18	3,973	11	17	47%	33%
2012	10,179	17	9,826	12	17	35%	27%
5-WY Summary	36,007	19	35,662	11	17	40%	39%

*This is a preliminary analysis. Performance updates will continue as new data becomes available.

sfwmd_gov

Short-term Phosphorus Trend

- P concentration fluctuates during a 24-hr period
- Trend did not seem impacted by the flow pulsing events.
- Spikes occurred during vegetation maintenance activities within the cell

PSTA Cell Total Phosphorus Trend

- P concentration fluctuates slightly with time of day; fluctuation is more prominent at the inflow
- P concentration decreased once the system began flows in July 2012

Water Column Enzyme Activities

Enzyme activities increase along the downstream gradient.

sfwmd.gov

Enzymatic and Ultraviolet Radiation Organic P Breakdown

Phosphatase enzymes and/or UV radiation may play a role in DOP (and PP) breakdown. The UV process may be enhanced in regions of shallow, sparse vegetation, or in areas where SAV is not "topped out".

Core Incubations

Evaluate SAV and periphyton growth rates, and the influence of these components on enzyme activity.

Week 8

Week 7

Core Incubations

Results to date demonstrate greater enzyme activity due to presence of calcareous periphyton than in treatment with SAV.

Phosphorus Mesocosm Study: Assessing nutrient removal efficacy and uptake mechanisms of native wetland vegetation

Objectives & Hypothesis

- Assess nutrient removal efficacy of six vegetation types under a very low P environment
- Examine major P removal mechanisms
- Test the hypothesis that the native vegetation treatments, including water lily and sawgrass, will reduce water-column P concentrations to levels below what SAV and cattail treatments can achieve

6 vegetation types X 3 replicates

Waterlily monoculture

Waterlily – Spikerush mix

Sawgrass

Control (no vegetation)

Cattail

Sawgrass

Water lily

Dec. 2012

Mixed/Spikerush

Cattail

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Outflow TP Concentrations

P flux observed during the first ~2 yrs of study (stabilization period)
Poorest performance in Spikerush/water lily mix
Best performance in water lily treatment

Sampling Date

Outflow TP Concentrations (11/1, 11/20, & 12/5 sampling)

•Best performance observed to date was in water lily treatment

	Inflow TP (ppb)	Outflow TP Concentration (ppb)						
		Water lily	Soil-SAV	Mixed	Cattail	SAV	Sawgrass	
Mean	23.7	11.3	15.3	16.7	19.3	27.7	28.4	
SD	6.0	1.2	2.3	2.0	4.5	13.9	6.7	

Questions?

NATER MANA

HE EVERBLADES

00

Periphyton Stormwater Treatment Area (PSTA) and Phosphorus Mesocosm Research Studies

> Delia Ivanoff Sr. Supervising Environmental Scientist Water Quality Treatment Technologies Section