Total-Flow Automatic Sampler for Pumping Station S-5A

Hemispheric Center for Environmental Technology

Rajiv Srivastava Phone: (305) 348-6621 Cellular: (305) 299-5600 Fax: (305) 348-1697 Email: <u>rajiv@hcet.fiu.edu</u>

8

South Florida Water Management District

Bahram Charkhian Phone: (561) 753-2400 Ext. 4744 Cellular: (561) 662-3868 Fax: (561) 791-4094 Email: bcharkh@sfwmd.gov

Background

S-5A

- pumping station in the Palm Beach County
- located at the northern tip of the Water
 Conservation Area 1 (WCA1)
- Consists of six axial flow pumps
 - 116 in. dia and rated at 800 cfs
- Pumps surplus water from agricultural area, L-10, L-12 basin into Water Conservation Area 1 (WCA1)

Importance of S-5A

Entry point for water into the Everglades Protection Area

- Proximity to the Everglades Agricultural Area (EAA) makes it a receiving point for run-off water from sugar and other farms
- Discharge is used for estimating the water quality
 - Runoff is rich in nutrients especially phosphorus
 - Adverse effect of **phosphorus** on the ecology of Everglades
 - Everglades Forever Act (EFA)
 - Developing effective EAA-best management practices that focus on improved on-farm water management techniques and controlled fertilizer application for reduction in phosphorus levels
 - Quantifying eutrophication (excessive plant growth) for water draining into the Everglades

Sampling Protocol

EAA-EFA Mandates

- require flow-proportional sampling
- stipulates water quality monitoring system such that total loading of phosphorus can be accurately determined

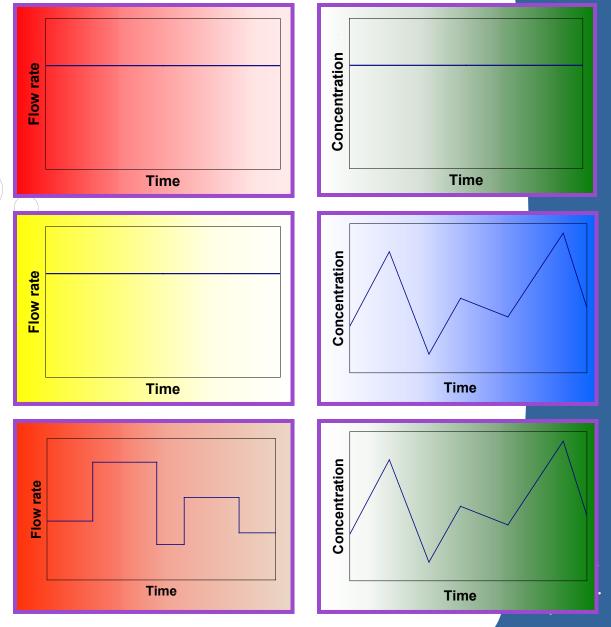
Samples must be representative of the overall discharge from the station

Current Sampling at S-5A

- Auto-sampler 1 that takes samples in conjunction with pump operation from a fixed location
 - Totalizer triggers sample collection
 - Frequency once every 32768 rotations
- Grab samples are also taken, about 15 ft. upstream of the pumping station
 - Frequency weekly
- Another auto-sampler added upstream during 2001

Limitations of the current configuration of auto-sampler

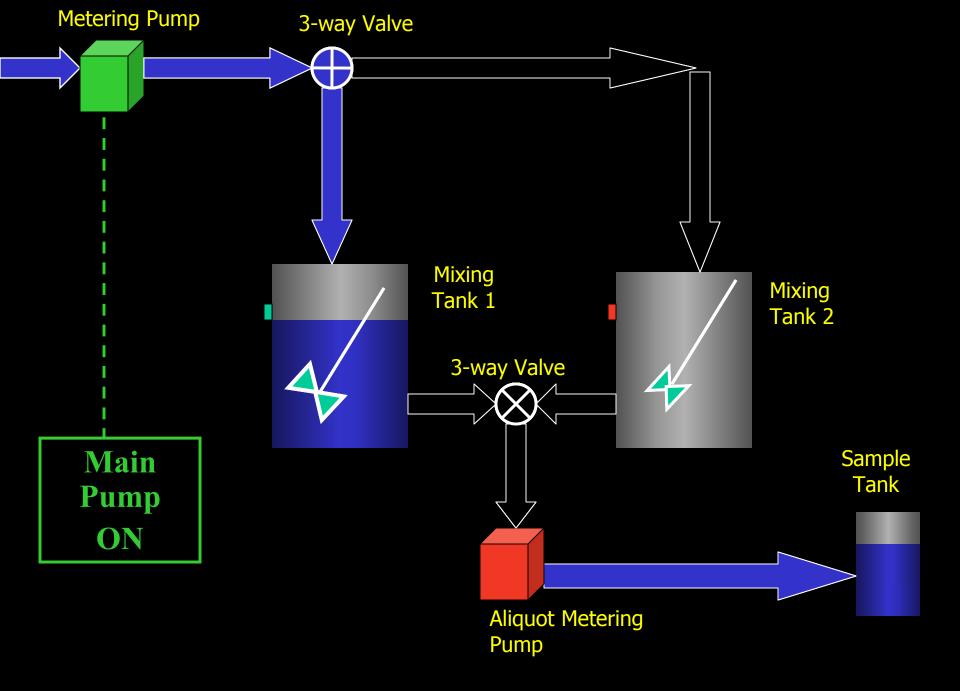
Location - The sampler is designed to collect the sample aliquot only from the inlet bay at Pump 4


- If pump(s) other than Pump 4 are running, sampling is from a stagnant zone
- Variations in phosphorus concentration with time might not be adequately captured in the aliquots i.e. the samples collected are not representative of flow
- Total Phosphorus Loading based on such a **sample** is not accurate

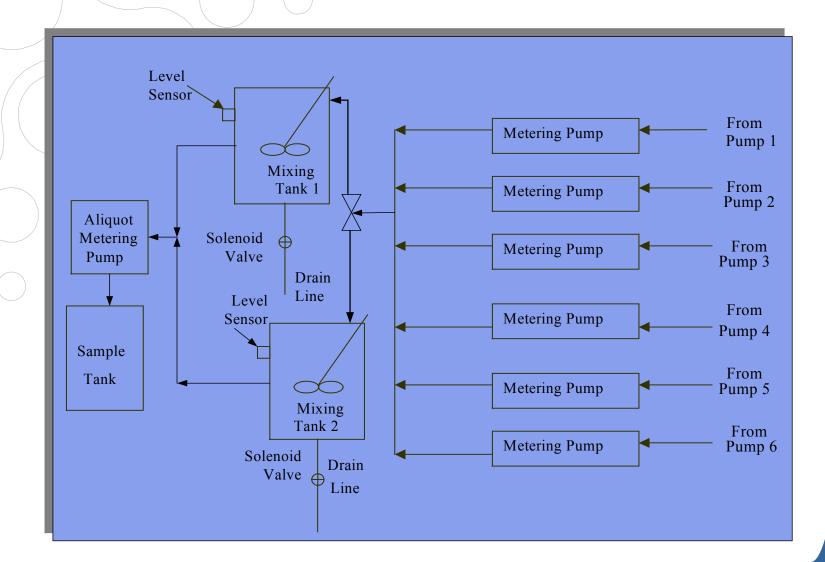
Sampling and Load Determination

Sampling Situations

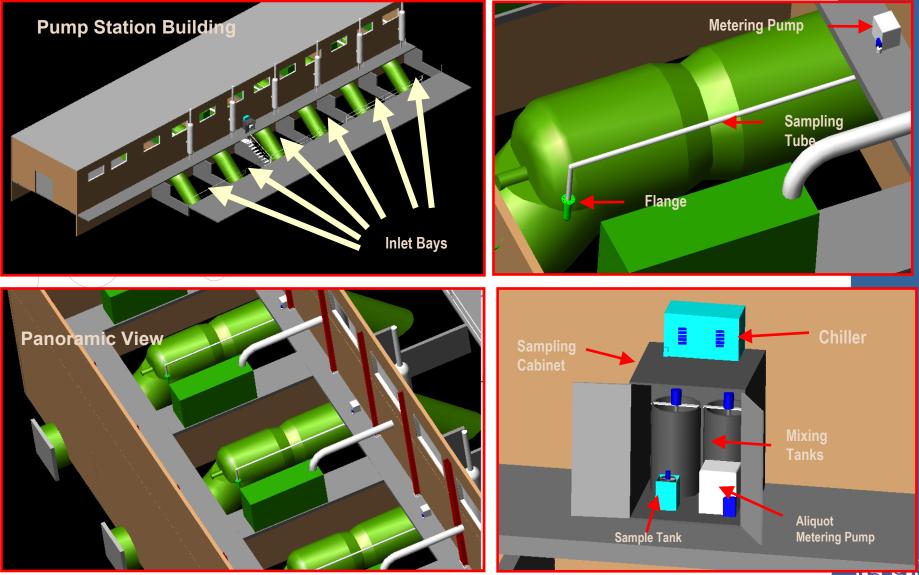
- 1. Constant flow and constant concentration
- 2. Constant flow but varying concentration
- 3. Varying flow and varying concentration- flow proportional


Basis of the Proposed Total Flow Auto-sampler

Representative sampling

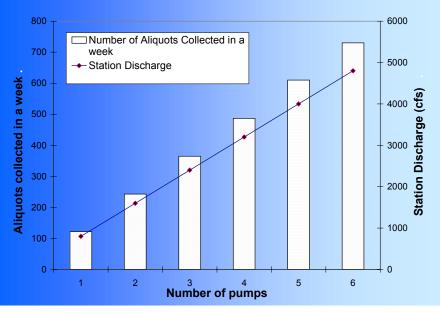

- sample from each operational individual pump
- Flow-proportional
- Continuous sampling of the discharge

Total Flow Continuous Auto-Sampler



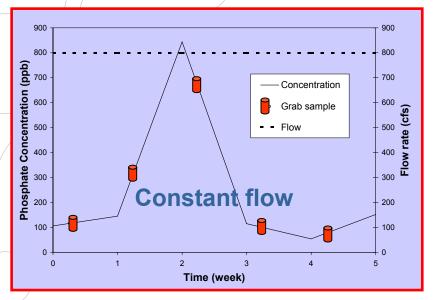
Proposed Total Flow Auto-Sampler Schematic

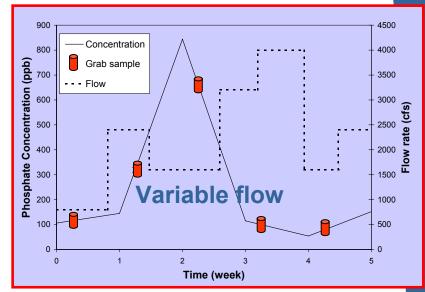
System Conceptualization



System Design

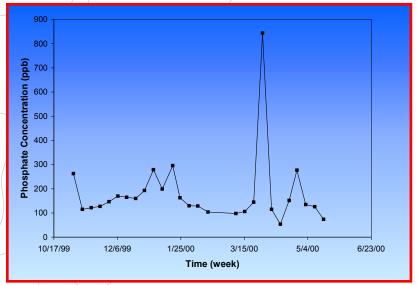
- Flowrate in sampling tube 6 ft/s (max)
- Diameter of sampling tube 3/8 in.
- Length of sampling tube 120 ft (max)
- Volume of Mixing tank(s) 55 gal (208 L)
- Volume of Sample Tank 10 gal (38 L)
- Volume of each aliquot sample 50 mL
- Frequency of Aliquot Sampling Once every 5 minutes (at maximum discharge).


Number of Pumps Running	6	5	4	3	2	1
Station Discharge cfs (Mgal/min)	4800 (2.16)	4000 (1.8)	3200 (1.44)	2400 (1.08)	1600 (0.72)	800 (0.36)
Total Flowrate of Sampling Stream(s) from Pump Bay (gpm)	12	10	8	6	4	2
Residence time in Mixing Tank (min)	4.6	5.5	6.9	9.2	13.75	27.5
Time between Aliquot Sampling (min)	4.6	5.5	6.9	9.2	13.75	27.5
Number of Aliquots Collected in a week (Basis: 8 hrs of operation every day)	730	610	487	365	243	122
Volume of Aliquots Collected in a week Gal	9.6 (36.5)	8 (30.5)	6.42 (24.3)	4.84 (18.3)	3.22 (12.2)	1.6 (6.1)

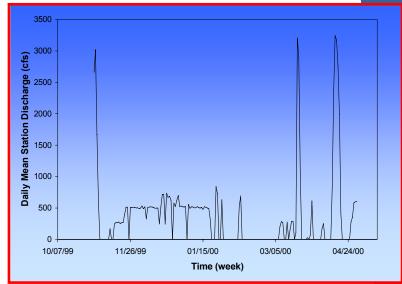

* A flow rate of 2 gpm for the metering pump corresponds to a discharge rate of 800 cfs through the main pump

Error Estimation

- Error associated with the sampling technique - assuming that there are no measurement or instrument errors
- Variations in concentration with time
- For two cases of discharge:
 - constant discharge
 - varying discharge
- Assumption: Current auto-sampler collects samples that are representative of the discharge



Aliquots collected	Case 1	Case 2
S-5A Grab	5	5
S-5A Auto-sampler	1120	3090
Proposed Total flow Auto-sampler	1832	4784


	CASE1		CASE2	
	Loading (Ton)	%Error	Loading (Ton)	%Error
True	176.2		431	
S-5AGrab	175	0.9	481	12
S-5A Auto-sampler	176.1	0.06	433	0.6
Proposed Total flowauto- sampler	176.2	0	431	0

Error Analysis Results

Phosphate concentration based on actual grab samples taken at S-5A, from November 1999 to May 2000 (26 weeks)

Actual discharge from the S-5A, from November 1999 to Ma 2000 (26 weeks) obtained from DBHYDRO

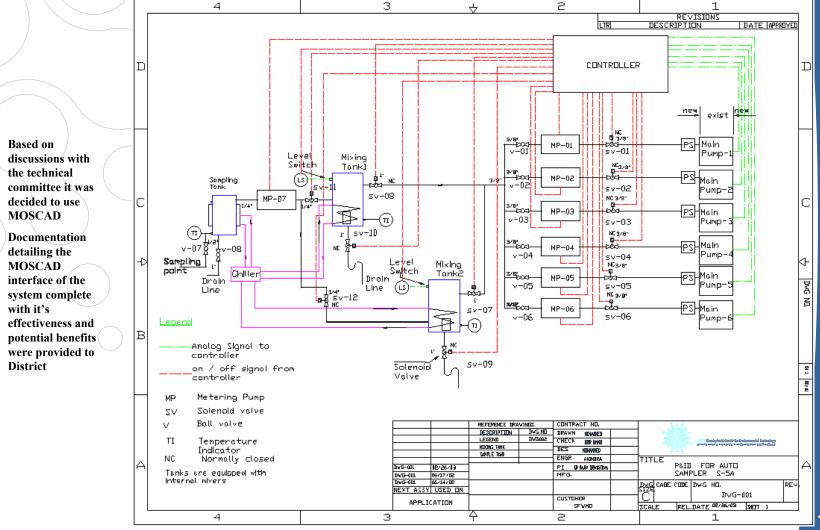
Source	Relative Error present	Relative Error caused (in determining phosphate loading)
Flow computation	± 10%	± 0.5 %
Sampling stream flow (metering pump)	± 2%	± 0.05%
Aliquot metering	± 0.5%	±0.005
All three combined		±1%

Proposed Total Flow Auto-Sampler - Summary

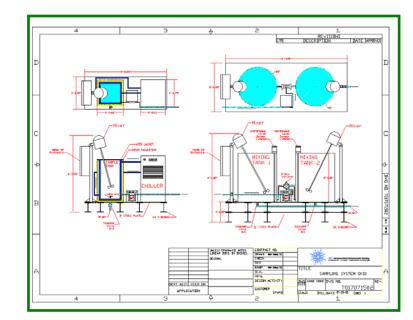
Total flow sampler

samples continuously at a rate proportional to the discharge flow

- Capable of sampling from all the pumps, thereby ensuring representative sampling
- Valves and metering pumps easily available (off the shelf) and replaceable
- Completely refrigerated system
- Robust control, data logging and remote query using MOSCAD


Bench-scale Study

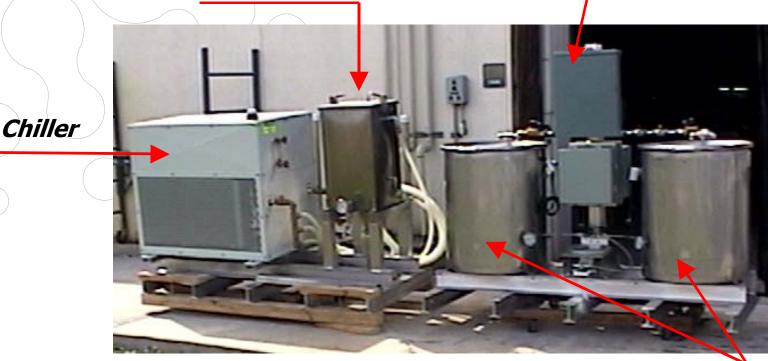
Concept demonstrated using a bench-scale system



Total Flow Auto-sampler P&ID

Fabrication & Implementation

- System designed to fit onto a skid for easy transportation and installation at site
- Taps for installation are planned to taken from the pump discharge side sampling port
- Pumps will be supported on the I-Beam near the tap
- Sampling tubes and instrumentation conduits will run on the existing rack



Total Flow Continuous Auto-sampler

Sampling Tank

Junction Box

Mixing Tanks

Contact Information

Ali Ebadian Director Hemispheric Center for Environmental Technology Florida International University 10555 West Flagler Street, CEAS 2100 Miami, Florida 33174 Phone: (305) 348-3585 Fax: (305) 348-4176 Email: ebadian@hcet.fiu.edu

Technical POC Rajiv Srivastava Phone: (305) 348-6621 Cellular: (305) 299-5600 Fax: (305) 348-1697 Email: rajiv@hcet.fiu.edu

Visit HCET on the Internet: http://www.hcet.fiu.edu

