WELCOME

Caloosahatchee Minimum Flow and Level Rule Development Workshop

June 20, 2019

Workshop Objectives

- Engage with stakeholders
- Discuss all flow options derived from various supplemental statistical or mathematical options
- With each flow target/range show the percent of time the recovery strategy (C-43 Reservoir) can meet the minimum flows

Caloosahatchee Estuary in Fort Myers

Flow Target Options for the Caloosahatchee MFL

Cassondra Armstrong, Ph.D. Section Administrator June 20, 2019

Original Approach

Confidence Interval Approach (P. Julian, FDEP)

- > To account for variability around the mean S-79 flow across indicators, upper and lower limits can be derived
- >To find the minimum protective flow, the upper confidence interval can be used
- A weighted average can also be used to estimate the upper confidence level by weighting indicators with high variation about the mean less than those with less variability around the mean

Confidence Interval Approach

Description	Statistic	Upper 95%	Upper 80%
Arithmetic Mean of Indicator Q_{S79} , (m) :	Mean	380.5	
Standard deviation of Indicator Q_{S79} , (s) :	StDev	104.3	
Number of Indicators used in the analysis, N :	Ν	11	
Deg. Of Freedom (DOF) = N-1 :	Df	10	
Probability for Prediction Interval :	1-tail Prob	0.95	0.80
Student-t Statistic (tp) :	Тр	1.81	0.88
$Limit = m + s \times \frac{t_p}{\sqrt{N}} :$	Discharge Limit	437 cfs	408 cfs

A 95% or 80% Confidence Interval could be applied.

Adapted from power point from: Dr. Paul Julian (FDEP)

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Weighted Mean Confidence Interval Approach

Description	Statistic	Upper 95%	Upper 80%
Weighted Mean of Indicator Q _{S79} , (m):	Mean	397.7	
Weight Standard deviation of Indicator Q_{S79} , (s) :	StDev	68.8	
Number of Indicators used in the analysis, N :	Ν	10	
Deg. Of Freedom (DOF) = N-1 :	Df	9	
Probability for Prediction Interval :	1-tail Prob	0.95	0.80
Student-t Statistic (tp) :	Тр	1.83	0.88
$Limit = m + s \ \times \frac{t_p}{\sqrt{N}} :$	Discharge Limit	437 cfs	417 cfs

- Weighting done using the inverse coefficient of variation (1/CV). Where:
 - High CV = weighted less
 - Low CV = weighted more

Adapted from power point from: Dr. Paul Julian (FDEP)

City of Sanibel / Environmental Science Associates Approach

- > Relationship between monthly average flow at S-79 and average monthly salinity at Ft. Myers
 - Method Evaluate data by month to assess what flow is required to meet a salinity of 10 at Ft. Myers 80% of the time
- Model the relationship between monthly average flow at S-79 vs monthly average salinity at Ft. Myers
 - Method solve the derived regression equation for S_{FtM} = 10

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

City of Sanibel / Environmental Science Associates Approach

Table 3 – Approximate flow thresholds (in units of 100 cfs) that would result in at least an 80% probability of producing monthly average salinities of 10 ppt or lower.

Month	Approximate flow threshold (cfs)		
Jan	700		
Feb	500 to 600		
Mar	400		
Apr	500		
May	600 to 700		
Jun	400		
Jul	400		
Aug	400		
Sept	400		
Oct	400		
Nov	400		
Dec	500 to 600		

Taken from 6/12/19 Memorandum from: Dr. David Tomasko (ESA) & James Evans (City of Sanibel), pg. 7

City of Sanibel / Environmental Science Associates Approach

Figure 3 – Average monthly flow at S-79 vs. average monthly salinity at Ft. Myers for the period of WY 1993 to WY2013. (Figure A-13(b) from District, 2018).

Taken from 6/12/19 Memorandum from: Dr. David Tomasko (ESA) & James Evans (City of Sanibel), pg. 8

Interquartile Range Approach

sfwmd.gov

> Choose the flow at S-79 at the 75th percentile

Method	25th percentile	50th percentile	75th percentile
Indicator Mean	311 cfs	381 cfs	451 cfs
Indicator Median	283 cfs	400 cfs	457 cfs

- Based on the WaSh model, calibrated and verified with 39 period-of-record data, account for relative percent contribution of tidal basin flow under given flow at S-79
- A flow-based change that considers normal dry season conditions

- >Amend flow at S-79 to account for additional contributions from tidal basin
- >Average dry-season contribution of S-79 is 82% of the total inflow

Method	S-79 (82%)	Tidal Basin (18%)	Total Flow (100%)
Indicator Mean	381 cfs	84 cfs	465 cfs
Indicator Median	400 cfs	87 cfs	487 cfs

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Summary

Flow (cfs)	Source	Method
400	SFWMD	Median of resource-based multi indicator Approach
408	P. Julian (FDEP)	Upper 80% CI of Mean of Indicators
417	P. Julian (FDEP)	Upper 80% CI of Weighted Mean of Indicators
437	P. Julian (FDEP)	Upper 95% CI of Non & Weighted Mean of Indicators
451	SFWMD	75% Interquartile of Indicator Mean
457	SFWMD	75% Interquartile of Indicator Median
465	SFWMD	Addition of 18% tidal basin contribution to Indicator mean
487	SFWMD	Addition of 18% Tidal Basin contribution to Indicator median
	ESA/City of Sanibel	Solve for regression of average monthly salinity at Ft. Myers and flow at S-79

MMB

Recovery of Caloosahatchee River MFL

- Subsection 373.0421(2), Florida Statutes.
- All options evaluated to determine the ability of the approved recovery strategy (C-43 Reservoir performance) to meet the MFL

- C-43 Reservoir Model with Future Condition Base simulation
- Percent of time (months) the flow target is met (1965-2005)

FCB_400	FCB_408	FCB_417	FCB_437	FCB_451	FCB_457	FCB_465	FCB_487
97.2%	95.3%	94.7%	93.1%	88.8%	88.4%	87.2%	85.2%

* The future condition base (FCB) model simulation is used because Subsections 373.0421(2), F.S., and 62-40.473(5), F.A.C., require a 20-year planning horizon to determine if the MFL is met.

Public Discussion

Caloosahatchee Minimum Flow and Level Rule Development Workshop

June 20, 2019

- June 30, 2019 All Written Public Comments Due
 - Submit all letters or comments to:

Don Medellin at <u>dmedelli@sfwmd.gov</u>

July 11, 2019 – Governing Board Meeting

Questions

Caloosahatchee MFL Draft Rule Criteria

Proposed revision to Caloosahatchee MFL rule based on "Best Available Information", including scientific studies, modeling and peer review conducted over the past 8 years

➤ Magnitude: 30-day moving average flow of 400 cfs at S-79

Duration: An MFL exceedance occurs during a 365-day period when the 30-day moving average flow at S-79 is below 400 cfs and the 30-day moving average salinity exceeds 10 at the Ft. Myers salinity monitoring station

Return Frequency: An MFL violation occurs when an exceedance occurs more than once in a five-year period

Note: MFL exceedances are expected until the recovery strategy is completed and operational

Existing MFL Criteria

- MFL rule initially adopted in 2001
- Based on salinity tolerance of a single ecological indicator - tape grass (Vallisneria)
- Mean monthly flow of 300 cfs at S-79
- MFL exceedances are based on salinity criteria
- 2000 peer review recommendation: MFL should be set on a suite of additional indicators within the upper and lower estuary

