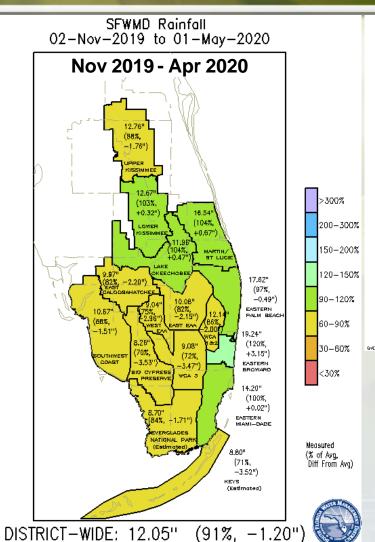

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

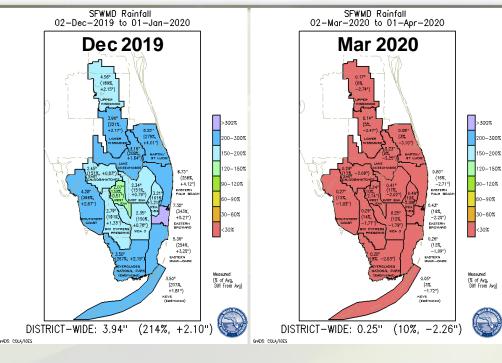
Robert Shuford Lead Scientist Ecosystem Restoration and Capital Projects 18th Annual Public Meeting on the Long-Term Plan for Achieving Water Quality Goals for the Everglades Protection Area Tributary Basins February 22, 2021

AGENDA

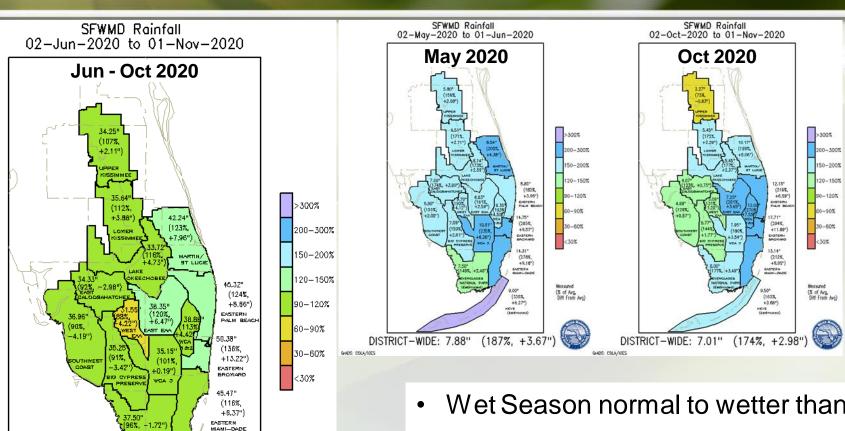
1.	Welcome and Introduction	9:00
	Robert Shuford, Ecosystem Restoration and Capital Projects Bureau	
2.	System Conditions	9:05
	Jose Otero, Ecosystem Restoration and Capital Projects Bureau	
3.	Everglades Stormwater Treatment Areas (STA) Performance Update	9:25
	Jake Dombrowski, Applied Sciences Bureau	
4.	STA Vegetation Management and Enhancement	9:45
	Eric Crawford, Land Resources Bureau	
5 .	Restoration Strategies: Stormwater Treatment Area (STA) Science Plan Update & Highlights	10:05
	Tom James, Applied Sciences Bureau	
6.	Restoration Strategies: Design and Construction Update	10:25
	Lucine Dadrian, Engineering and Construction Bureau	
7.	Southern Everglades Nutrient Source Control Program Update	10:45
	Steve Sarley & Youchoa Wang, Ecosystem Restoration and Capital Projects Bureau	
8.	Public Use on SFWMD Stormwater Treatment Areas	11:05
	Jerry Krenz, Land Resources Bureau	
9.	Public Comment	11:25

SOUTH FLORIDA WATER MANAGEMENT DISTRICT



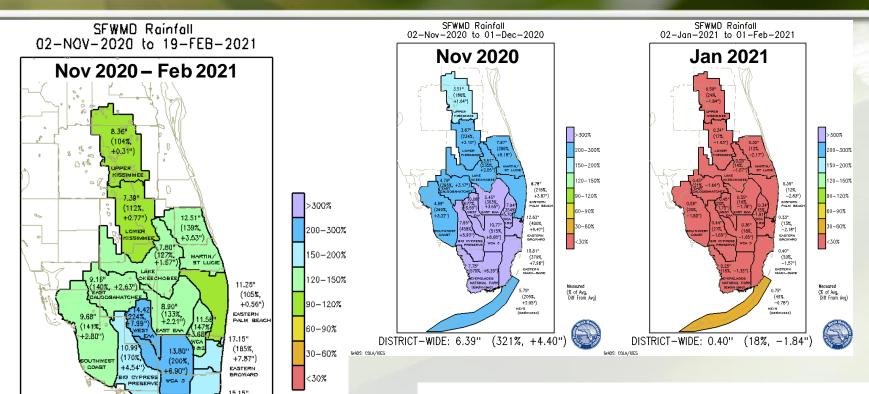

Jose Otero, P.E.
Section Administrator
Ecosystem Restoration and Capital Projects

18th Annual Public Meeting on the Long-Term Plan for Achieving Water Quality Goals for the Everglades Protection Area Tributary Basins February 22, 2021


Rainfall Dry Season Water Year 2020

- Dry Season normal to drier than normal
- Dec 2019 very wet to extremely wet (Lower Kissimmee and Okeechobee)
- Mar 2020 extremely dry, some areas 5% of average

Rainfall Wet Season Water Year 2021

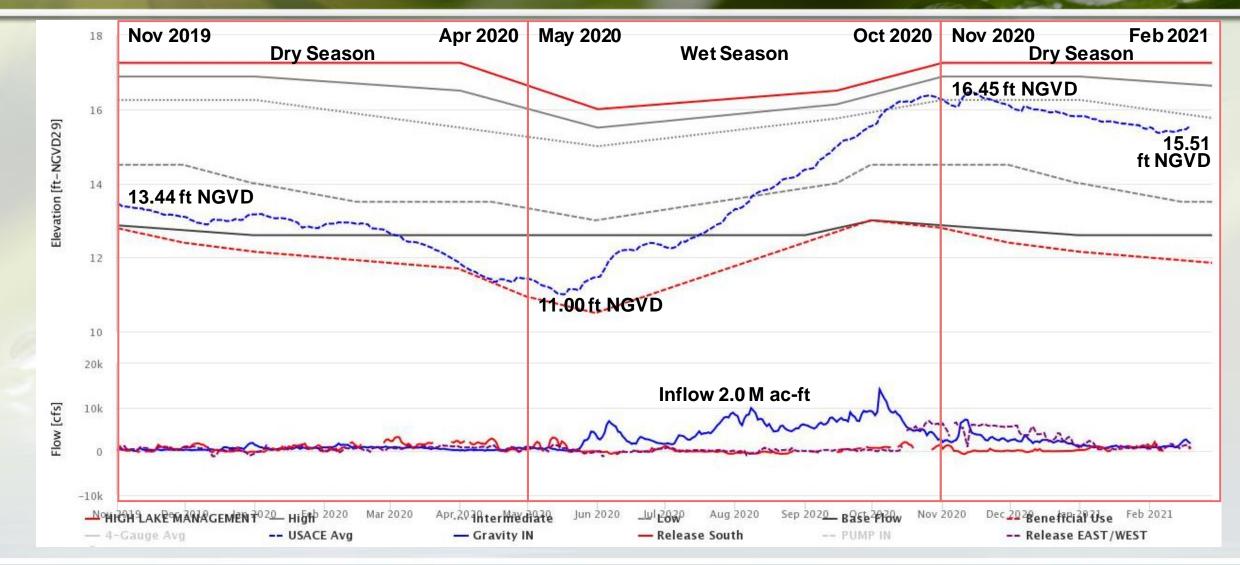


(% of Avg, Diff From Avg)

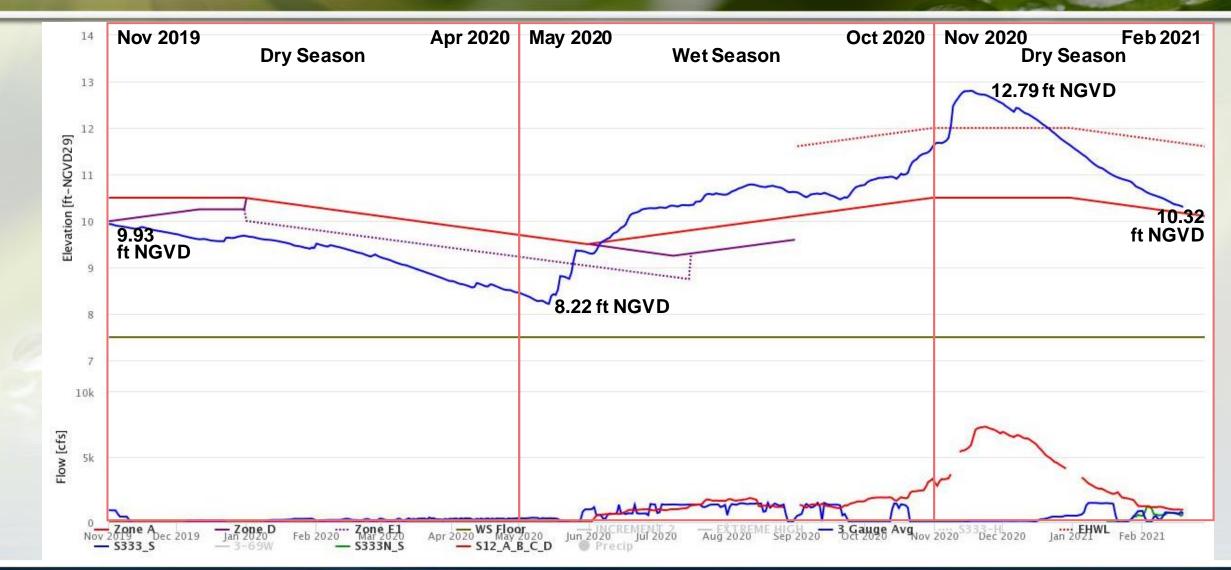
- Wet Season normal to wetter than normal
- May 2020 very wet to extremely wet (WCA3A)
- Oct 2020 very wet to extremely wet (East EAA, WCA 1, and WCA2A), Upper Kissimmee drier than normal

DISTRICT-WIDE: 37.54" (107%, +2.41"

Rainfall Dry Season Water Year 2021 (partial)



+6.91") EASTERN MIAMI-DADE


> (% of Avg, Diff From Avg)

- Dry Season normal to extremely wet, especially WCA3A
- Nov 2020 very wet to extremely wet (south of Lake Okeechobee)
- Jan 2021 extremely dry, some areas 5% or average

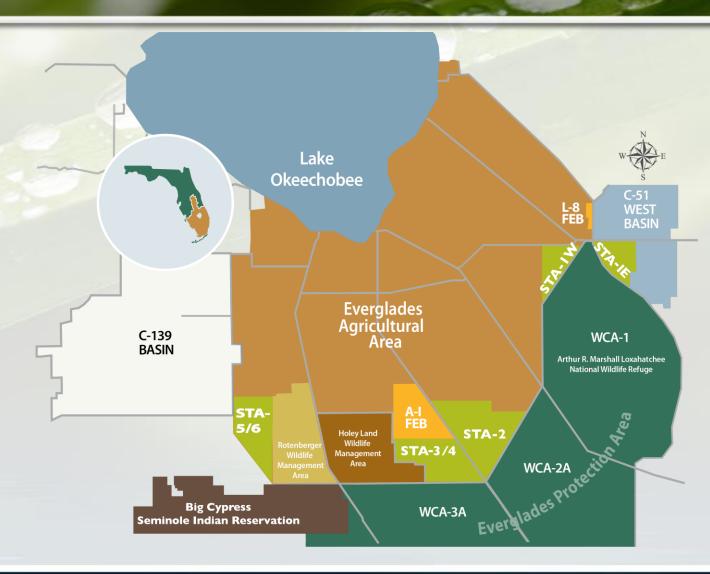
Lake Okeechobee Stage

WCA 3A Stage

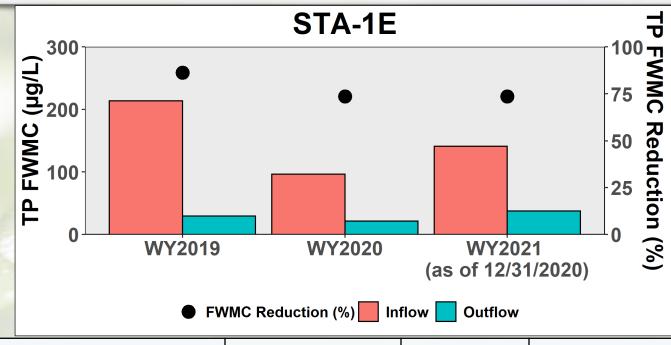
Water Year Inflows to STAs

Contact Information

Jose Otero jotero@sfwmd.gov SOUTH FLORIDA WATER MANAGEMENT DISTRICT

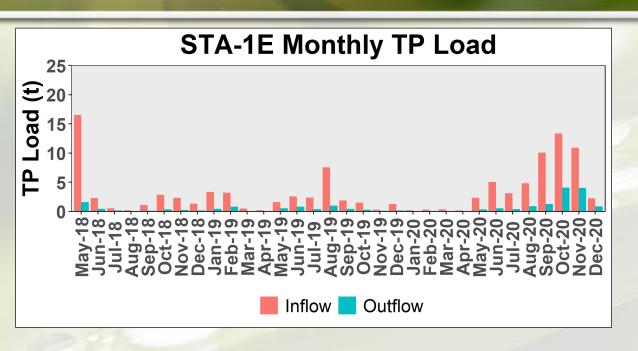

Everglades Stormwater Treatment Areas Performance Update

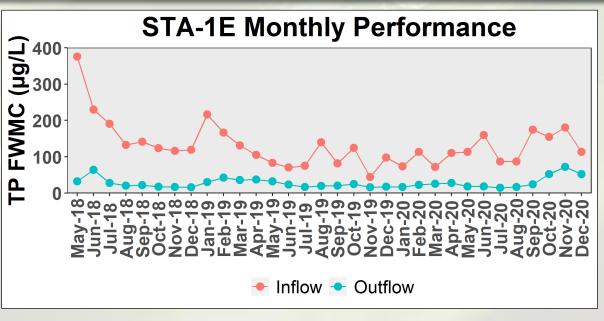
Jake Dombrowski Scientist 4 Applied Sciences 18th Annual Public Meeting on the Long-Term Plan for Achieving Water Quality Goals for the Everglades Protection Area Tributary Basins February 22, 2021



Introduction

- >STA Performance
 - Flow volumes, TP loads and FWMC
 - Flow-weighted Mean Concentration
- > Yearly and monthly variation
- Construction and operational restrictions

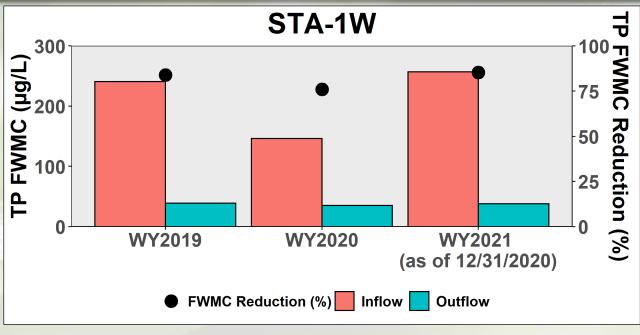



STA-1E Performance Comparison by WY

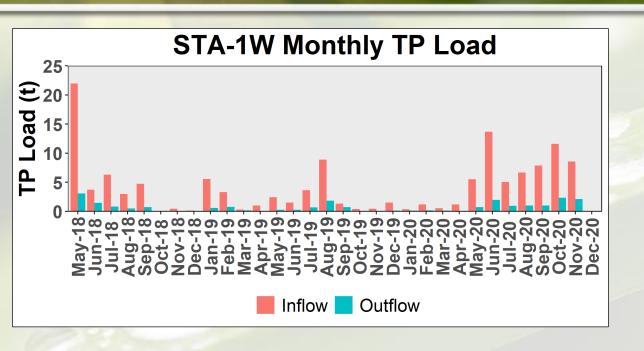
	WY2019	WY2020	Partial WY2021 (05/01/2020 - 12/31/2020)
Total inflow (k acre-feet)	131	170	299
Lake releases (k acre-feet)	46	12	21
TP FWMC inflow / outflow (μg/L)	214 / 30	96 / 21	141 / 37
TP load inflow / outflow (tons)	34 / 5	20 / 4	52 / 13
Reduction in TP FWMC / load	86% / 87%	74% / 76%	74% / 76%

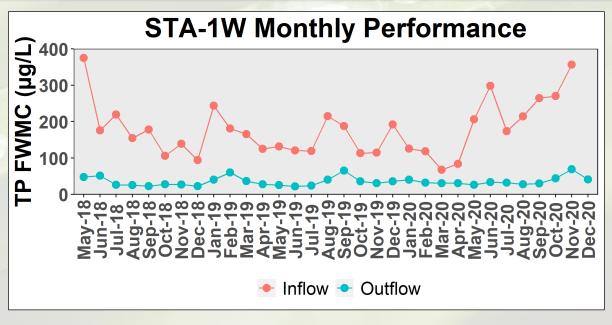
STA-1E Monthly TP Load and FWM Concentration

- Elevated inflow TP loads, FWMC during WY2021
- Outflow TP FWMC has previously been stable in the 15-25 ppb range, rising during WY2021 to the 50-75 ppb range


STA-1E Highlights (Jan. 1, 2020 – Dec. 31, 2020)

- ➤ Western flow-way offline
 - WDC levee repairs, Restoration Strategies earthwork Cells 5 &7, road removal Cell 6
- > Periodic restrictions in all three flow-ways
 - EDC levee repairs
 - Vegetation management activities: spraying, inoculation, and planting
 - Black-necked stilt nesting reported in Cells 4N, 5, 6, and 7




STA-1W Performance Comparison by WY

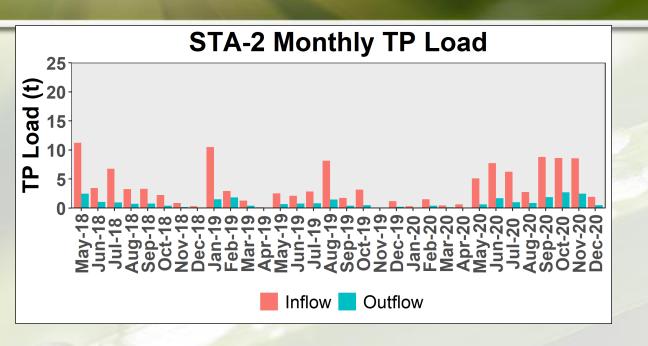
			Partial WY2021
	WY2019	WY2020	(05/01/2020 - 12/31/2020)
Total inflow (k acre-feet)	170	130	186
Lake releases (k acre-feet)	26	17	5
TP FWMC inflow / outflow (μg/L)	241 / 39	146 / 35	257 / 38
TP load inflow / outflow (tons)	50 / 8	23 / 5	59 / 10
Reduction in TP FWMC / load	84% / 84%	76% / 81%	85% / 83%

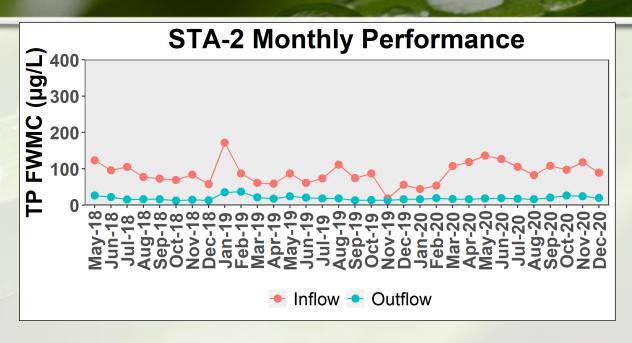
STA-1W Monthly TP Load and FWM Concentration

- Elevated inflow TP loads and FWMC during WY2021
- > Outflow TP FWMC remains relatively stable around 30 ppb

STA-1W Highlights (Jan. 1, 2020 – Dec. 31, 2020)

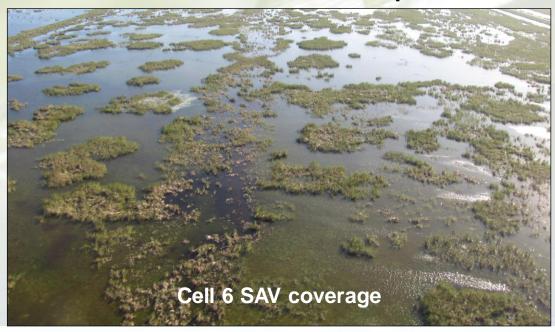
- Periodic restrictions in all three flow-ways
 - Construction activities related to the STA-1W Expansion #1
 - Discharge canal plug construction complete
 - Black-necked stilt nesting reported in Cell 8



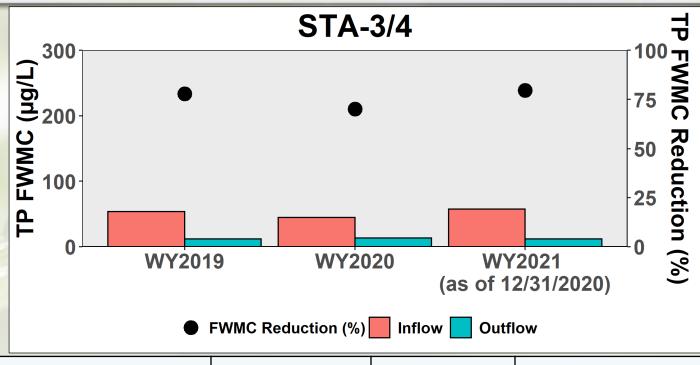

STA-2 Performance Comparison by WY

	WY2019	WY2020	Partial WY2021 (05/01/2020 - 12/31/2020)
Total inflow (k acre-feet)	362	247	370
Lake releases (k acre-feet)	122	37	27
TP FWMC inflow / outflow (μg/L)	104 / 23	81 / 18	109 / 21
TP load inflow / outflow (tons)	46 / 10	25 / 6	50 / 12
Reduction in TP FWMC / load	78% / 78%	78% / 78%	81% / 76%

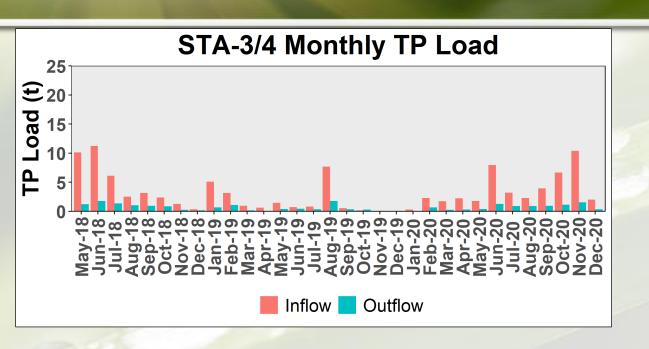
STA-2 Monthly TP Load and FWM Concentration

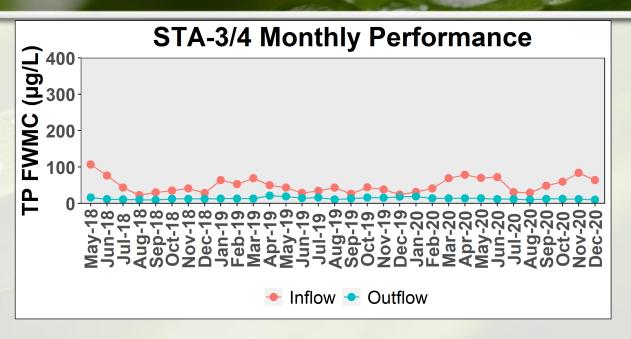


- Elevated inflow TP loads/FWMC during WY2021
- Outflow TP FWMC remains in the 15-20 ppb range and has been stable since March 2019


STA-2 Highlights (Jan. 1, 2020 – Dec. 31, 2020)

- Periodic restrictions in all flow-ways
 - Flow-way 2 offline for earthwork project
 - Vegetation management activities: spraying, inoculations, plantings, tussock removal
- No monitored avian species nesting reported in STA-2

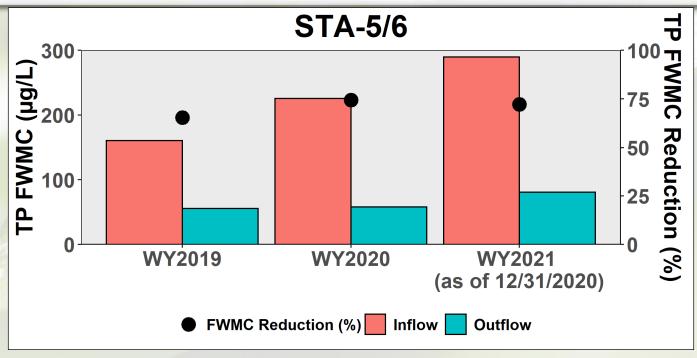



STA-3/4 Performance Comparison by WY

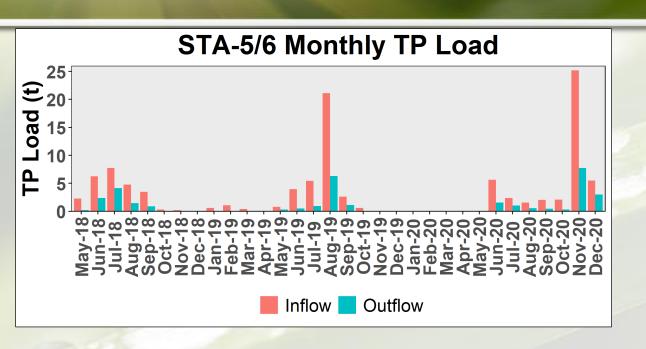
	WY2019	WY2020	Partial WY2021 (05/01/2020 - 12/31/2020)
Total inflow (k acre-feet)	710	328	540
Lake releases (k acre-feet)	206	56	32
TP FWMC inflow / outflow (μg/L)	54 / 12	45 / 13	57 / 12
TP load inflow / outflow (tons)	47 / 10	18/5	38 / 8
Reduction in TP FWMC / load	78% / 79%	70% / 72%	80% / 80%

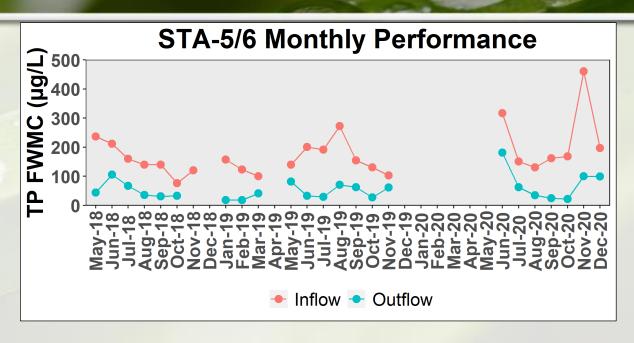
STA-3/4 Monthly TP Load and FWM Concentration

- Compared to other STAs, less variability in inflow TP loads due to A-1 FEB
- Outflow TP FWMC remains low and stable in the 10-15 ppb range


STA-3/4 Highlights (Jan. 1, 2020 – Dec. 31, 2020)

- ➤ All flow-ways were operational
- > Periodic restrictions
 - Installation of energy dissipators at all flow-way inflow structures
 - Vegetation management activities: planting, inoculations, spraying, tussock removal
 - No monitored avian species nesting observed

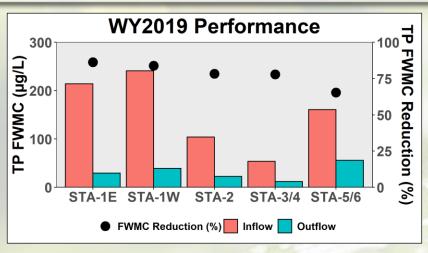


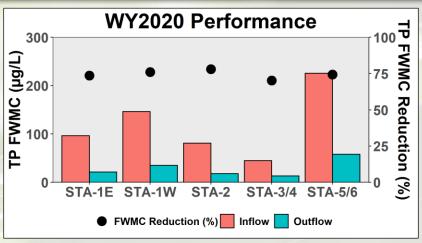

STA-5/6 Performance Comparison by WY

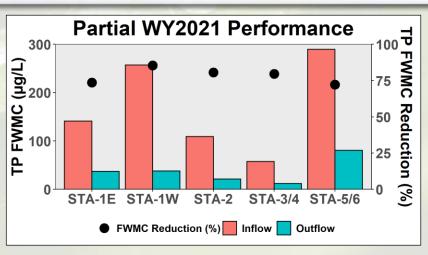
	WY2019	WY2020	Partial WY2021 (05/01/2020 - 12/31/2020)
Total inflow (k acre-feet)	138	124	124
TP FWMC inflow / outflow (μg/L)	161 / 56	226 / 58	289 / 81
TP load inflow / outflow (tons)	27 / 9	35 / 9	44 / 15
Reduction in TP FWMC / load	65% / 66%	74% / 73%	72% / 67%

STA-5/6 Monthly TP Load and FWM Concentration

- Inflow TP load spike due to storm events in August 2019 and November 2020
- Frequent dry-out conditions during the dry seasons
- Elevated inflow/outflow TP FWMC following rehydration


STA-5/6 Highlights (Jan. 1, 2020 – Dec. 31, 2020)


- ➤ All flow-ways were operational
- > Periodic restrictions
 - Restoration Strategies earthwork project in Flow-ways 2 and 3
 - Project complete, awaiting vegetation rehabilitation before flow-through
 - Black-necked stilt nesting in Cells 1B, 4A, 4B, and 6-2



All STAs Performance Comparison by WY

			Partial WY2021
	WY2019	WY2020	(05/01/2020 - 12/31/2020)
Total inflow (k acre-feet)	1510	1000	1519
Lake releases (k acre-feet)	470	163	97
TP FWMC inflow / outflow (μg/L)	110 / 23	98 / 24	130 / 28
TP load inflow / outflow (tons)	206 / 42	121 / 28	243 / 57
Reduction in TP FWMC / load	79% / 79%	75% / 76%	78% / 77%

Contact Information

Jake Dombrowski jdombrow@sfwmd.gov

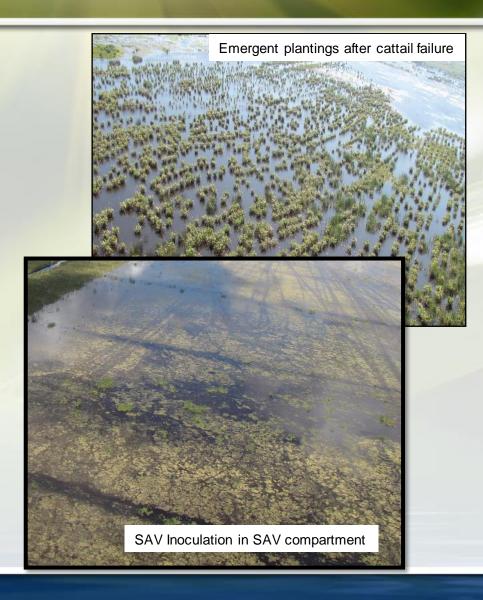
SOUTH FLORIDA WATER MANAGEMENT DISTRICT

STA Vegetation Management and Enhancement

Eric Crawford Senior Scientist Land Resources 18th Annual Public Meeting on the Long-Term Plan for Achieving Water Quality Goals for the Everglades Protection Area Tributary Basins February 22, 2021

Objective

Maintain sustainable vegetation-based phosphorus uptake processes


- ➤ Vegetation Enhancement
 - Establish/maintain appropriate vegetation communities
 - Improve stability and functional redundancy
- > Selective Management
 - Increase desirable species
 - Control Invasive/Undesirable species
 - Control exotic populations

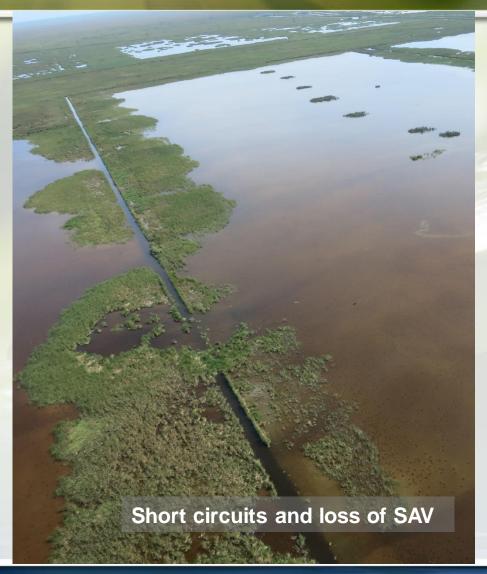
Invasive Species Control

- Dense native vegetation plantings can be made after treatments to interfere with the continued spread of invasive plants
- District staff have identified several native species to use in varying conditions to maximize resiliency and performance

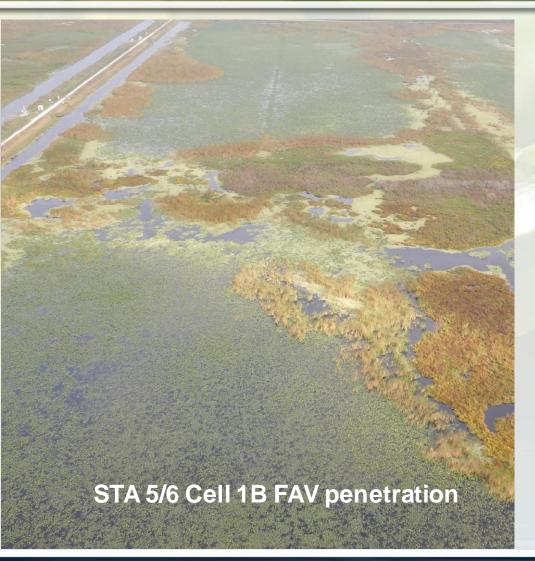
Vegetation Function

> Emergent Aquatic Vegetation (EAV)

- Re-establish stable soils
- Re-direct flow
- Nutrient uptake
- SAV stabilization
- Increase diversity/decrease clonal populations


> Submerged Aquatic Vegetation (SAV)

- Water column nutrient uptake
- Replenish seasonal die-off
- Replenish loss due to predation
- Repair damage
- Establish new SAV bed
- Increase species diversity


Adaptive Management Process

> Monitor vegetation health

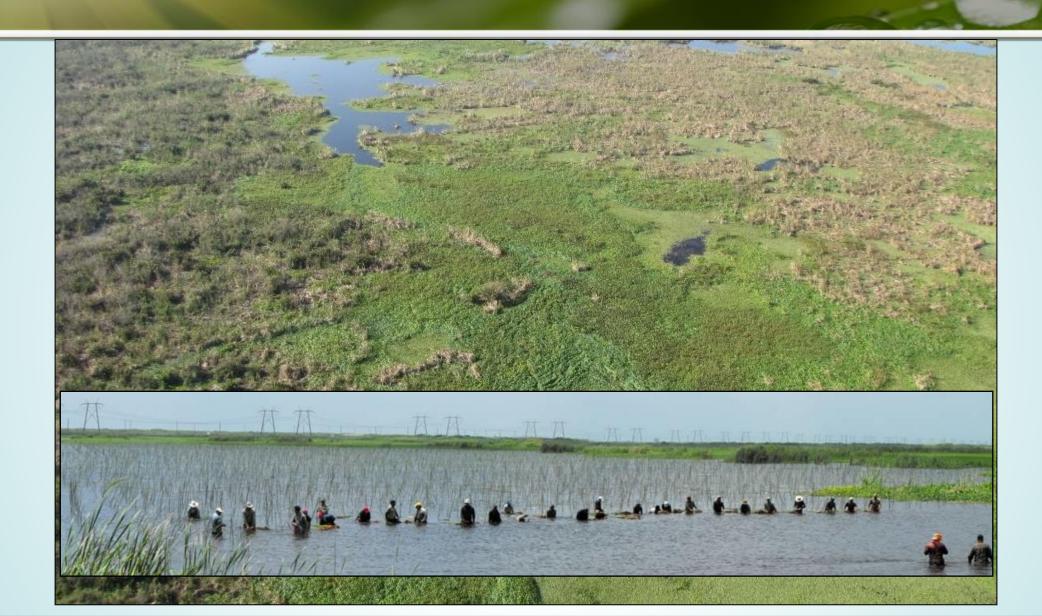
Presenter: Eric Crawford

Adaptive Management Process

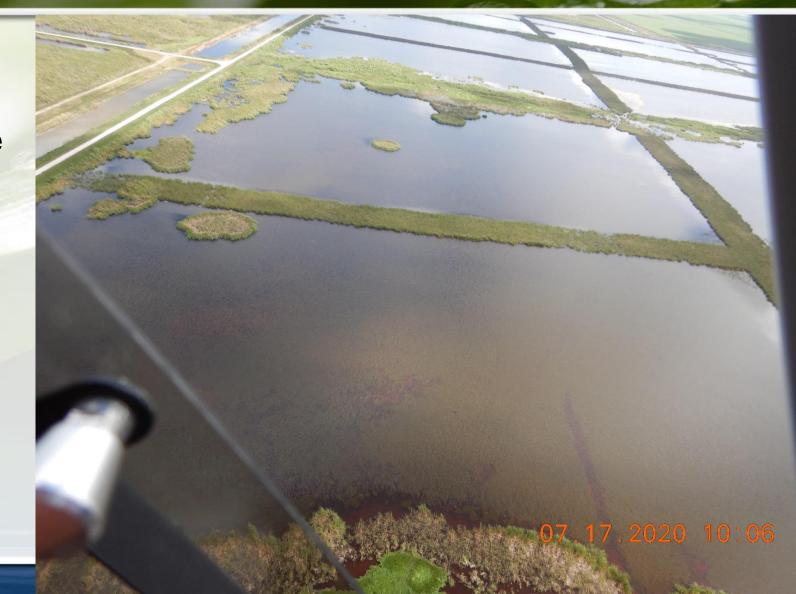
- >Monitor vegetation health
- >Coordinate with water management
 - Stage, flow rates (cfs), redirecting flow

Adaptive Management Process

- >Monitor vegetation health
- >Coordinate with water management
 - Stage, flow rates (cfs), redirecting flow
- > Proactively manage vegetation
 - Increase cover and health of desired species at a specific location
 - Control growth of undesirable species


Adaptive Management Process

- >Monitor vegetation health
- >Coordinate with water management
 - Stage, flow rates (cfs), redirecting flow
- >Proactively manage vegetation
 - Increase cover and health of desired species at a specific location
 - Control growth of undesirable species
- > Repair and restore
 - Emergent vegetation enhancements where vegetation is damaged or undesirable


SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Rehabilitation: Emergent Plants

Repair and Restoration of STA 2 Cell 3

- Over ten miles of emergent vegetation strips planted to protect and compartmentalize the Cell prior to SAV restoration
- Multiple short circuits and scoured out boat trails filled and planted
- SAV was planted and enhancements continue throughout the cell.

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Rehabilitation: SAV Inoculation

Inoculations to enhance growth in bare areas and increase diversity

SAV Management in STA Operations

- Compartmentalizing the SAV cells with vegetation strips can help protect and stabilize SAV populations
- Smaller, more diverse and compartmentalized SAV beds can be more resistant to short circuiting, disturbance, storm events and seem better at resisting colonization by exotic species.
- ➤ EAV provides structure, protection, and litter to assist with nutrient uptake

FAV Control

- Dense vegetation strips at the inflows can reduce FAV entering a cell
- Inflow strips can be shaped to trap and concentrate FAV decreasing herbicide use in the cells and reducing costs
- ➤ Repairing damage and short circuits can minimize FAV penetration into the cells

FAV Control

- Dense vegetation strips at the inflows can reduce FAV entering a cell
- Inflow strips can be shaped to trap and concentrate FAV decreasing herbicide use in the cells and reducing costs
- Repairing damage and short circuits can minimize FAV penetration into the cells

Coordinate with Engineering and Construction Group on Repairs and New Construction

- >STA 1E Cells 5 and 7, fill and regrade
- >STA 1E Cell 6, internal Levee degrading and canal filling to improve flow patterns
- >STA 2 Cell 2, fill and grade northern section to improve performance
- >STA 2 Cell 3, remove portions of remnant levees to improve flow patterns
- >STA 1W Expansion 2 design
- >A2 STA design

Contact Information

Eric Crawford

ecrawfor@sfwmd.gov

Restoration Strategies Science Plan

R. Thomas James Principal Scientist Applied Sciences 18th Annual Public Meeting on the Long-Term Plan for Achieving Water Quality Goals for the Everglades Protection Area Tributary Basins February 22, 2021

The Science Plan

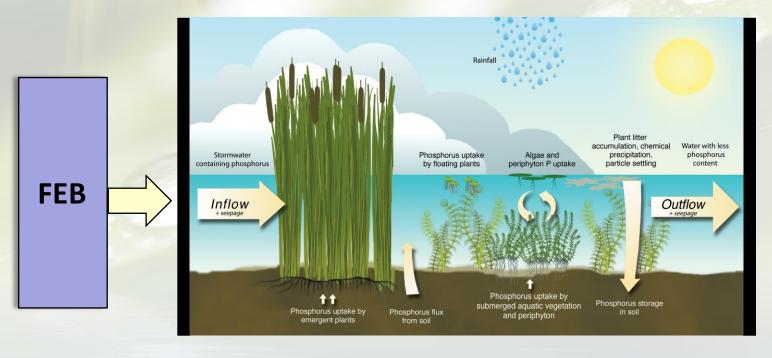
- ➤ Developed in 2013 and updated in 2018
- Specified in Restoration Strategies and required by STA permits and consent orders
- > Framework for scientific studies
 - Evaluate key factors and processes that affect phosphorus removal in the STAs
 - Support design, operation, & management of STAs to achieve Water Quality-Based Effluent Limits (WQBEL)

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

RESTORATION STRATEGIES REGIONAL WATER QUALITY PLAN

Science Plan

for the


Everglades Stormwater Treatment Areas

South Florida Water Management District 3301 Gun Club Road, West Palm Beach, Florida 33406 July 2018

Areas of Investigation

6 Key questions and 18 sub-questions on these topics

- 1. Design and operation of FEBs
- 2. Design and operation of STAs
- 3. Vegetation improvement
- 4. Internal loading of phosphorus
- 5. Biogeochemical and physical mechanisms
- 6. Role of fauna

Studies Completed

Study Title	Major Findings
Development of Operational Guidance for Flow Equalization Basin (FEB) and STA Regional Operation (Operation Study)	 Wave tests within the STAs Equations for flow, slope and resistance Equations support STA operations Developed iModel for Restoration Strategies Operational Protocol FEB operations can be optimized to meet the WQBEL.
Influence of Canal Conveyance Features on STA and FEB Inflow and Outflow P Concentrations (Canal Study)	 Canals can remove or export TP Export related to high flow events and increase of particulate P Use of FEBs to reduced peak flow should reduce TP export.
Investigation of STA-3/4 Periphyton-based Stormwater Treatment Area (PSTA) Technology Performance, Design, and Operational Factors (PSTA Study)	 Muck removal low inflow TP concentrations/loads resulted in annual flow weighted mean discharge of TP ≤ 13 ppb for last 13 years. Continue monitoring to evaluate performance.
Evaluation of Sampling Methods for TP (Sampling Study)	 Time-based autosampler, grab sample and flow-based auto samplers Time and grab more reliable for low flow gated structures, Autosamplers vulnerable to plant and animal contamination.
Evaluation of the Role of Rooted Floating Aquatic Vegetation (rFAV) in STAs (rFAV Study)	 rFAV does not enhance P reduction in outflow region Compared to submerged aquatic vegetation

Studies Completed

Study Title	Major Findings
Evaluation of P Sources, Forms, Flux and Transformation Processes in the STAs (P Flux Study)	 P removal in EAV is primarily organic in SAV primarily mineral Decreasing P Gradients from inflow to outflow Non flow conditions result in increased water column TP in SAV regions, especially after high load events Internal loading affects STA performance
STA Water and P Budget Improvements (Water and P Budget Study)	 Improved Period of Record flow data at all structures of STA-2 Flowways 1, 2, 3 and STA-3/4 all flow-ways Greatly improved water budgets (reduced residuals) Rainfall, ET, change in storage, and seepage are minor contributors More accurate Water and TP budgets were developed for STA-2 Flow-ways 1, 2 and 3, and all cells of STA-3/4

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Current Studies

Study Title	Year Initiated
Evaluation of Inundation Depth and Duration Threshold for Cattail Sustainability (Cattail Study)	2013
Use of Soil Amendments and/or Management to Control P Flux (Soil Management Study)	2013
Evaluation of Factors Contributing to the Formation of Floating Tussocks in the STAs (Tussock Study)	2018
Improving Resilience of SAV in the STAs (SAV Resilience Study)	2018
Investigation of the Effects of Abundant Faunal Species on P Cycling in the STAs (Faunal Study)	2018
Periphyton and Phytoplankton P Uptake and Release (Periphyton Study)	2019
L-8 FEB Operational Guidance (L8-FEBOG Study)	2019

New Studies

Study Title	Objectives
Data Integration and Analyses (Data Integration Study)	 Review and compile RSSP and STA study reports and publications Evaluate data sets for relationships among variables Develop and/or update models Analyze for data gaps Write guidance document to improve STA performance
Quantifying the Recalcitrance and Lability of Phosphorus (P) to Optimize P Retention Within STAs (Biomarker Study)	 Use biomarkers to determine relative source contribution from Inflow sources Vascular plants Algae/periphyton Fish Degradation products of litter
Phosphorus Dynamics in the Everglades Stormwater Treatment Areas (P Dynamics Study)	 Evaluate under-performing STA flowways Use methods of the P-Flux study
Assess Feasibility and Benefits of Consolidating Accrued Marl in the Everglades Stormwater Treatment Areas (Marl Study)	 Determine if marl consolidation can be improved Determine if improvement results in lower water column P concentration

Cattail Study

Objective

Identify water depth, duration of inundation, and frequency affecting the health of cattail communities in selected STA cells.

> Results

- In-situ study
 - Given water depths of 3 feet or greater for more than 100 consecutive days
 - Cattail density and below ground biomass declined
 - Leaf elongation in deeper conditions increased

Test Cell Study

- Five water depths: 1.3 (control), 2.0, 2.75 (moderate) 3.4 and 4.1 feet (deep)
- Deep waters compared to controls
 - Reduced density of adult and juvenile cattail
 - Increased leaf elongation
 - No significant differences for photosynthesis, water use efficiency and stomatal conductance

> Status

- Field sampling complete
- Nutrient analyses complete
- Final report is pending

Soil Management Study

➢ Objective

 Investigate whether internal loading of phosphorus can be reduced by application of soil amendments and/or soil management techniques

> Results

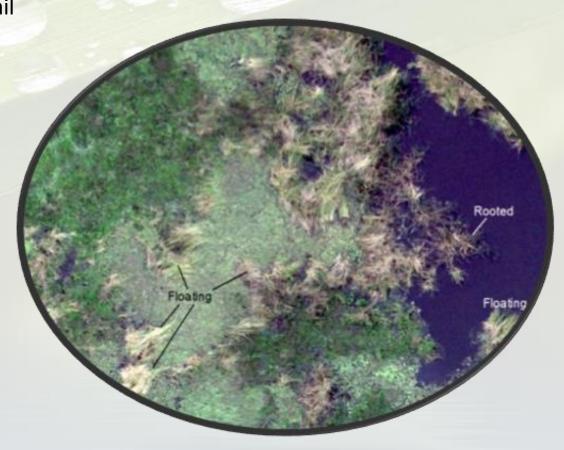
- Technologies exist that could improve STA performance
 - High costs and unknown effects to downstream Everglades
 - No further testing of chemical amendments planned
- Soil inversion study of Cell 7 of STA-1W Expansion Area
 - Soils in Cell 7 inverted, not in Cell 8
 - Post flooding results
 - Water column TP concentrations have declined over time
 - Cell 7 SAV is sparse throughout even months after flooding
 - Cell 8 SAV is high throughout
 - Soil TP in top 10 cm similar in both Cells but more heterogenous in Cell 7

> Status

Sampling at inflow and outflow structures will begin when flow-through operations begin

Tussock Study

➢ Objective


 Determine factors that cause the formation of floating cattail (Typha sp.) communities and tussocks

> Results

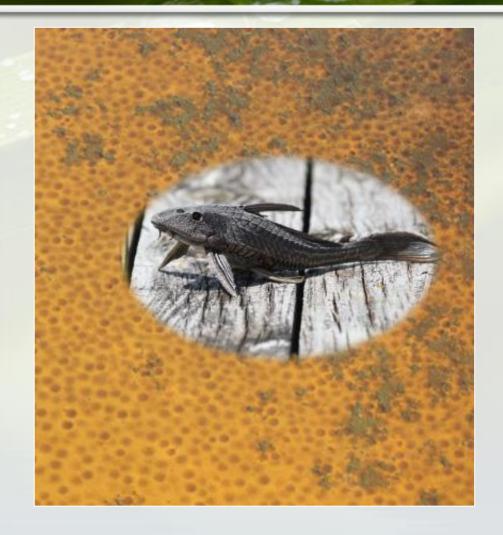
- Unmanned aerial vehicle (UAV) with multispectral scanner found tussocks not found in satellite imagery
- Nomenclature developed
 - Tussock vs wetland vs complex
 - Island vs mat complex
- Predictors of historical tussock formation
 - High-water levels
 - Past land use (agriculture)
 - TP content of soils

> Status

- Methods to improve UAV imagery processing underway
- Buoyancy model to be developed

Fauna Study

Objective


 Quantify abundant fauna and evaluate their effects on outflow STA cell P-cycling and loading

> Results

- Fish in STAs contain a greater proportion of P in body tissues than fish in Everglades
- STAs support 2 to 15 x higher biomass of fish & invertebrates than Everglades
- In STA- 2, 10 of the most abundant fish species store one metric ton of P within their body tissues
- Bioturbation can double the TP content in enclosures
- Excretion by fish can reprocess over 100% of external loading

> Status

- Calibration of electrofishing in enclosures is planned
- Herbivory study will be carried out
- Biomass sampling, bioturbation experiments and excretion rate studies to continue

SAV Resilience Study

Objective

 Investigate the effects of operational and natural environmental conditions on SAV health

Results

- Factors influencing SAV sustainability include: P loading, soil type, and water depth
- SAV standing crop biomass and tissue P contents decrease from inflow to outflow regions of STAs
- SAV grew well on aged muck, farmed, and marl soils in mesocosms
- SAV density was higher at higher P load rates in mesocosms
- SAV germinated faster on previously dried soils, no differences in growth
- SAV growth reduced in enclosures with fish

> Status

P load experiments ongoing, added a mesocosm with higher
 P soils to determine if high loads can lead to SAV collapse

Periphyton Study

Objective

 Estimate growth, senescence, P uptake and release rates from periphyton and phytoplankton in downstream STA treatment flow ways under various flow conditions

> Status

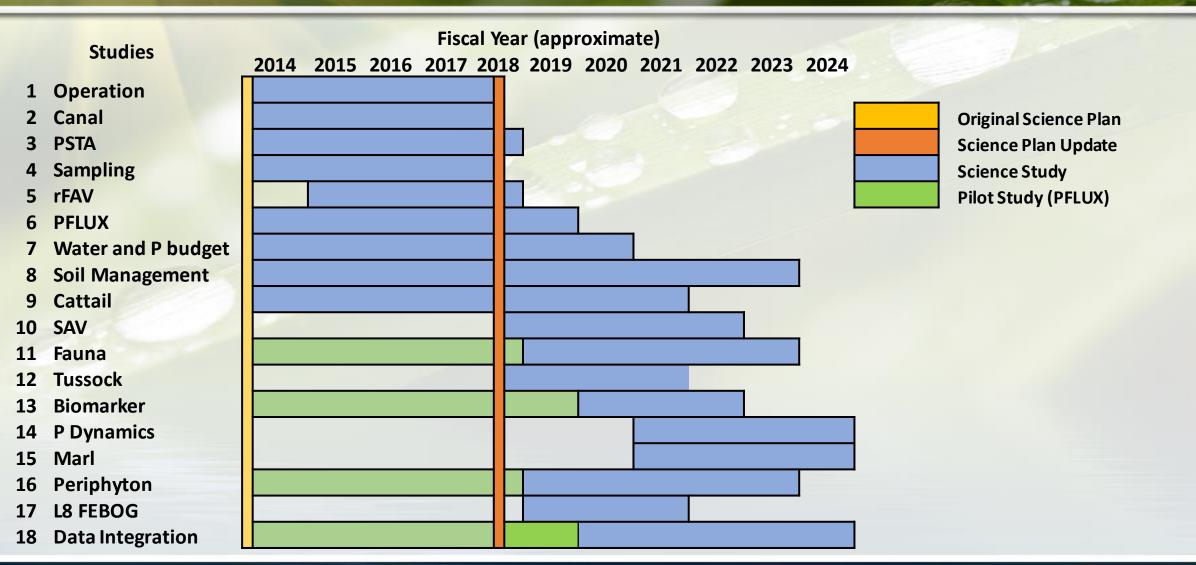
- Literature review and report completed (Phase I)
- Bioavailability study of dissolved organic P and N from the STAs underway (Phase II)
- Metagenomics study to evaluate metabolism is being developed (Phase III)

L-8 FEB STUDY

➢ Objective

 Provide insight into the relationships between L-8 FEB water quality, stage, and flow conditions, along with potential for groundwater interaction

> Results


- P concentrations are considerably lower in groundwater than L-8 FEB surface water
- Groundwater not responsible for periods of elevated P in surface water
- Large inflows
 - Contribute significant loads of nutrients and suspended materials
 - Inflow induced resuspension of benthic sediments may be major contributors to periods of elevated P in surface water at low stages

> Status

- Monitoring response of L-8 FEB to large inflow events at low stage
- Spatial sampling and characterization of benthic sediments to be analyzed for nutrients and minerals

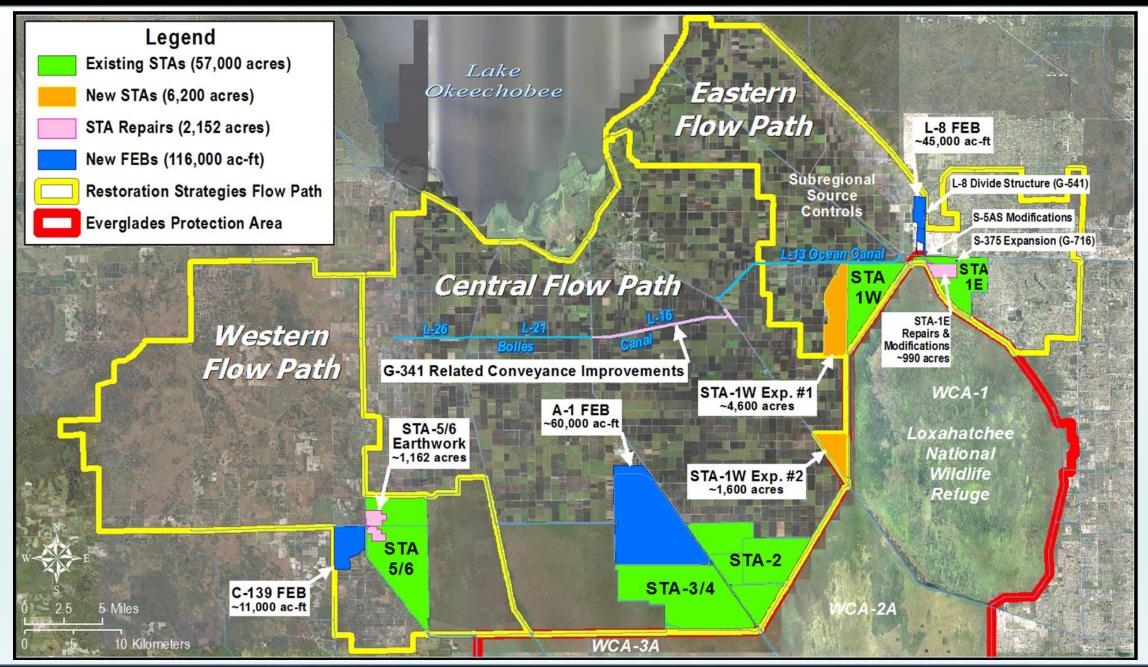
Science Plan Study Timelines

Contact Information

Tom James tjames@sfwmd.gov

For more information:

https://www.sfwmd.gov/our-work/restorationstrategies/science-plan SOUTH FLORIDA WATER MANAGEMENT DISTRICT


Restoration Strategies: Engineering & Construction Update

Lucine Dadrian, P.E.
Project Management Section Administrator
Ecosystem Restoration and Capital Projects

18th Annual Public Meeting on the Long-Term Plan for Achieving Water Quality Goals for the Everglades Protection Area Tributary Basins February 22, 2021

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Restoration Strategies Project Status

Completed Construction:

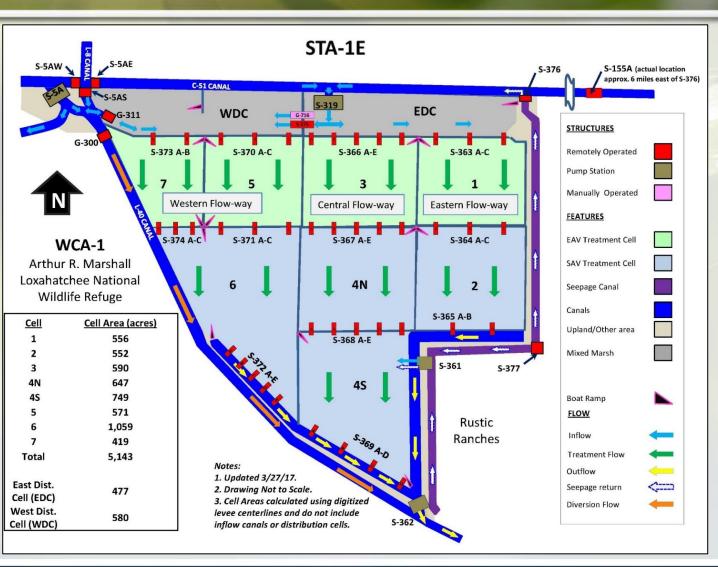
- STA2 Expansion Compartment B
- STA 5/6 Expansion Compartment C
- S-5AS Modifications
- L-8 FEB

Multi-Use Operation

- A-1 FEB
- L-8 Divide Structure (G-541)
- S-375 Expansion (G-716)
- STA 5/6 Earthwork Optimization
- STA-1W Expansion #1
- G-341 Segments 1 3

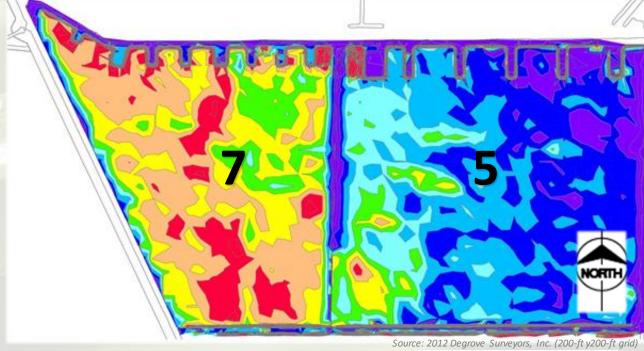
Ongoing:

- STA-1E Repair
- STA-1W Expansion #2
- G-341 Conveyance Seg 4
- G-341 Conveyance Seg 5
- C-139 FEB


Construction

Construction

Construction


Design

Construction

- ➤ Raise and regrade ~990 acres in Cells 5 and 7 to achieve sustainable Emergent Aquatic Vegetation
- ➤ USACE Designed and Constructed STA-1E
 - Adjacent to northeast side of WCA-1 (Loxahatchee National Wildlife Refuge)
 - Flood control by stormwater retention
 - Stormwater treatment
 - Re-establish WCA-1 hydro-periods
- > Transferred to SFWMD in October 2005
 - Cells 5 & 7 experienced performance issues related to excessive water depths
 - Complete regrading of Cells 5 & 7 by December 31, 2022

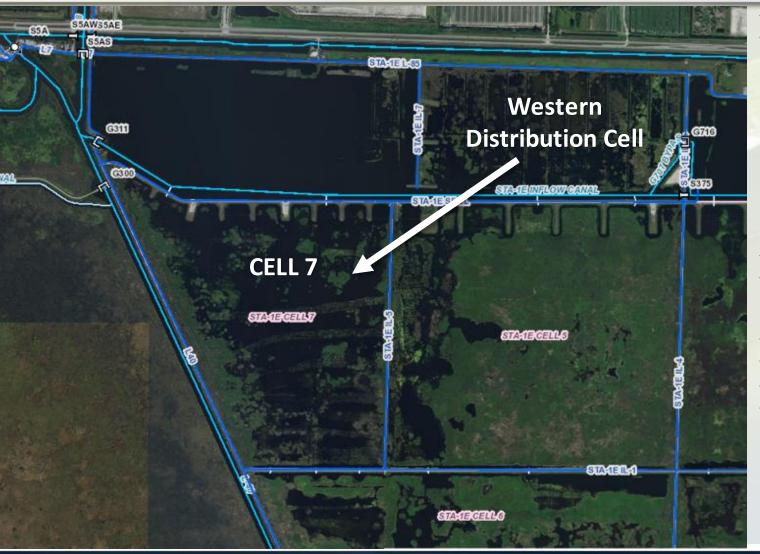
- ➤ Regrade Cells 5 & 7 to ~11.75-ft NAVD
- ➤ Cell 5
 - Level and redistribute existing material
- ➤ Cell 7
 - Entire cell is below target elevation
 - Imported sandy soil required to raise & regrade Cell 7
- District awarded two Contracts to support project
 - Palm Beach Aggregates Imported Soil awarded at Feb 2020 GB for \$10,091,280
 - Thalle Construction Co Regrading awarded at April 2020 GB for \$13,078,500

RED = LOW

TARGET

ELEVATION

BLUE = HIGH

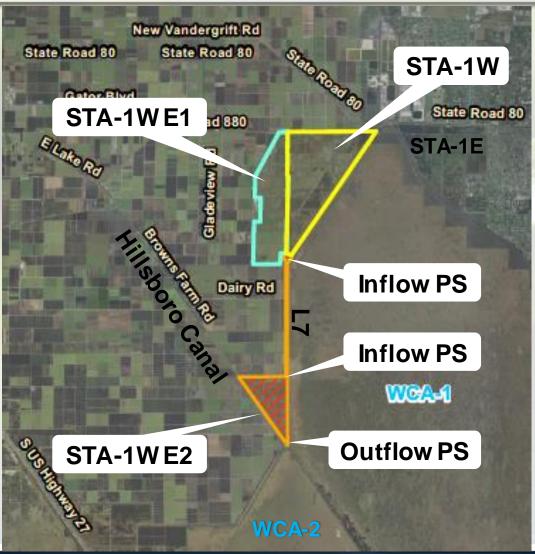

c. zoiz beg	1010 001107	013, 1116. (200	-ft y200-ft
Е	XISTING GF	RADE NAVD	
NUMBER	MINIMUM	MAXIMUM	COLOR
1	3.1	9.5	
2	9.5	10.0	
3	10.0	10.5	
4	10.5	11.0	
5	11.0	11.5	
6	11.5	12.0	
/	12.0	12.5	
8	12.5	14.0	

Presenter As a Shirt of a Cou

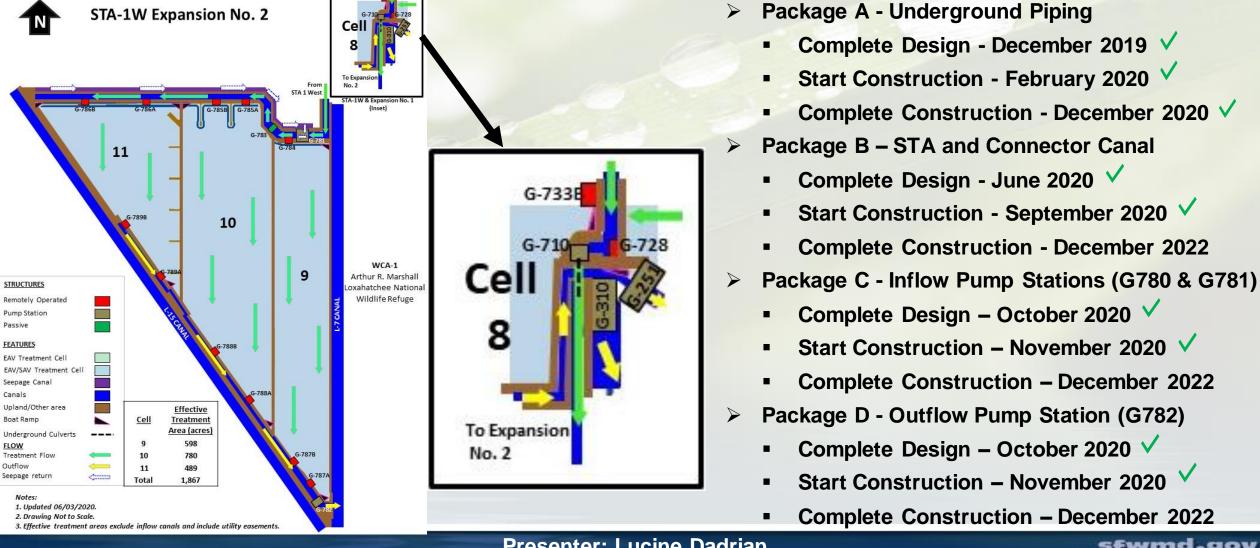
Cell 5 - Level and Redistribute Existing Material

Cell 5 - Leveling and Canal Reshaping

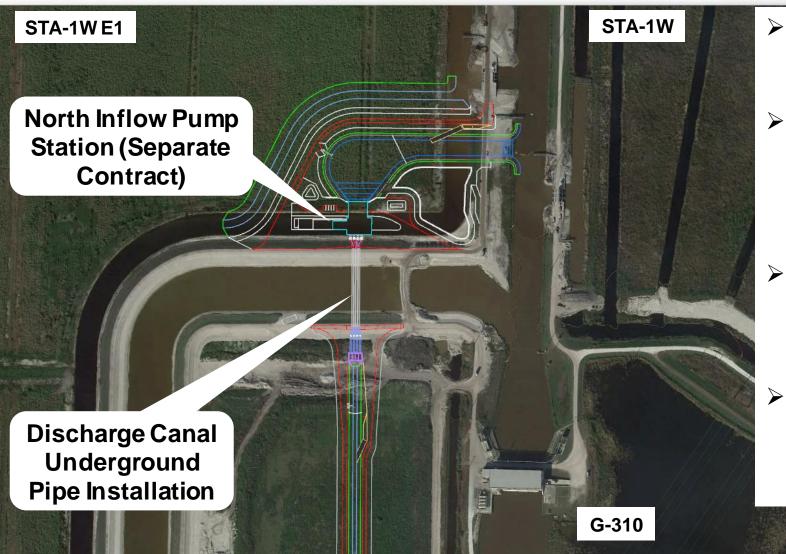
- ➤ Additive Change Order
 - WDC: Excavate 300,000 cubic yards of sandy soil (current Contract includes 150,000)
 - Cell 7: Transport and fill
 - Total Change Order \$1.2M
- ➤ Palm Beach Aggregates
 Deductive Change Order
- >\$460,000 net savings to District
- Net schedule improvements will allow for replanting earlier in the dry season for improved root establishment prior to the wet season operations


Presenter: Lucine Dadrian

Cell 7- Imported Soil Hauling


Cell 7- Imported Soil Distribution ~25% complete

STA-1W Expansion No. 2



- Purpose is to extend treatment flowways for STA-1W
- ➤ Overall Construction Cost \$214M
- Features 1,600 acres of additional treatment area
- ➤ Inflows from S-5A and C-51 West Basins via STA-1W
- > Outflow to Water Conservation Area 1

STA-1W Expansion No. 2 – Schedule of Bid Packages

Bid Package A – Underground Pipes


- ➤ Restoration Strategies requires STA-1W to discharge to Expansion #1 and #2 separately
- ➤ Expansion #2 inflow is from the south end of STA-1W discharge canal, pipe installation is to cross under Expansion #1 discharge canal and route STA-1W water south along a lined channel to the Expansion #2 footprint
- ➤ Construction contract required excavation and installation of four 60-inch by 310 feet long steel pipes purchased through separate Contract for \$812,720
- ➤ Construction was completed by Loren Jock Trucking, Inc. in December 2020 for a total Contract Cost with Change Orders of \$2,802,353

Bid Package B – STA Civil Works

- ➤ STA-1W Expansion #2 consists of 2,071 acres and is connected to the existing STA-1W complex by a new canal. This connection canal encompasses approximately 100 acres of land running north-south parallel and adjacent to the existing L-7 levee.
- ➤ Project includes the construction of three (3) new STA cells, a 6-mile concrete lined connection canal, perimeter and interior levees, canals, structures, culverts, boat ramps, maintenance ramps, and all other associated appurtenances
- ➤ Awarded at August 13, 2020 Governing Board meeting to Thalle Construction Company, Inc. for \$96,800,000. NTP was on September 28, 2020.

Bid Package C – Inflow Pump Stations

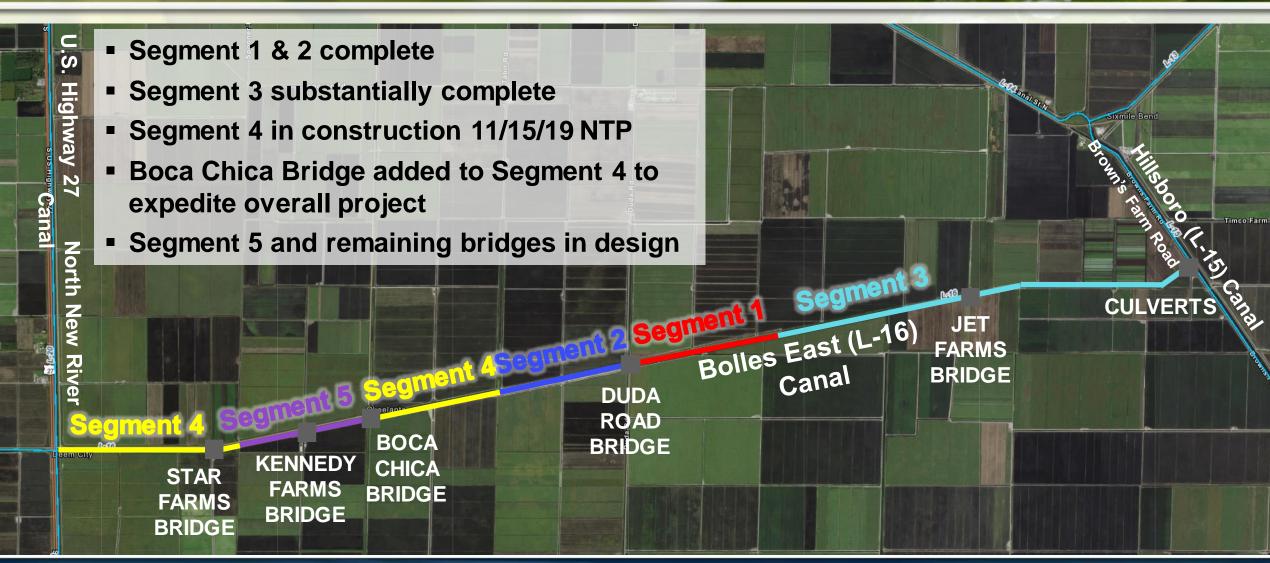
- ➤ The STA Expansion #2 is located approximately 6-miles south of the existing STA 1 W complex. A new Connection Canal, to be constructed as part of Package B, will connect the existing STA 1W facility to the STA Expansion #2.
- ➤ Project includes two (2) new pump stations: a North Inflow Pump Station, G-780, to send water from the STA 1W discharge canal to the proposed Connection Canal, a South Inflow Pump Station, G-781, to lift the water from the proposed Connection Canal into the new Inflow Canal.
- ➤ Awarded at November 12, 2020 Governing Board meeting to Harry Pepper and Associates, Inc. for \$76,122,514. NTP was on December 18, 2020.

Bid Package D – Outflow Pump Station

- ➤ The STA Expansion #2 is located approximately 6-miles south of the existing STA 1 W complex. A new Connection Canal, to be constructed as part of Package B, will connect the existing STA 1W facility to the STA Expansion #2.
- ➤ Project includes one (1) new Outflow Pump Station, G-782, to lift water from the Outflow canal to WCA –1.
- ➤ Awarded at November 12, 2020 Governing Board meeting to Harry Pepper and Associates, Inc. for \$37,418,195. NTP was on December 18, 2020.

SOUTH FLORIDA WATER MANAGEMENT DISTRIC'

G-341 Related Conveyance Improvements Bolles East Canal



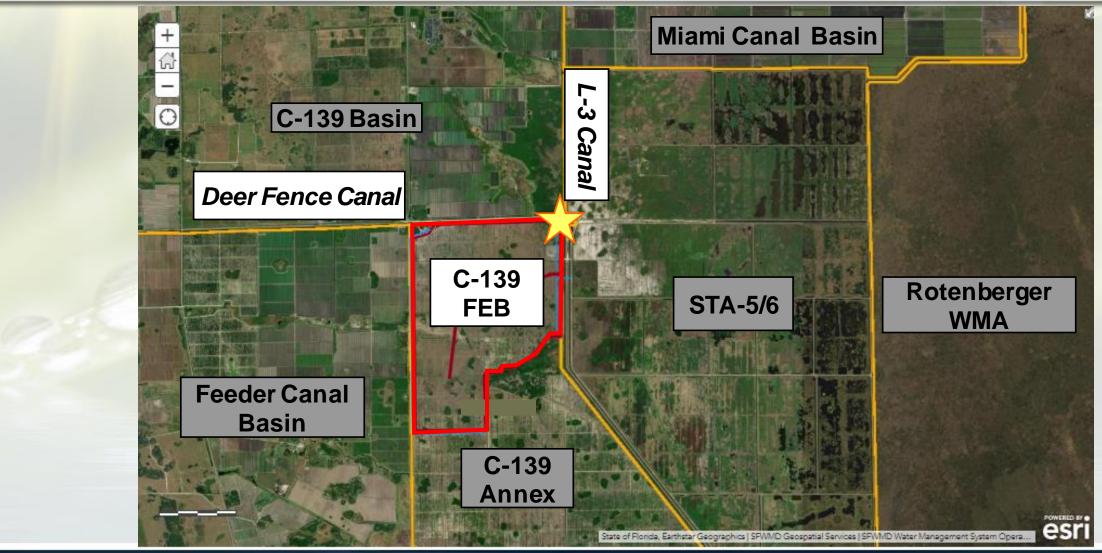
- Project boundary between Hillsboro Canal and North New River
- Deepening and widening of the L-16 Bolles Canal to construct largest possible cross-section within District right of way to increase operational flexibility
- Replace impacted farm ditches and roads outside of right of way
- > Relocation of existing electrical services
- Replace canal crossings impacting the increased canal cross section

sfwmd.gov

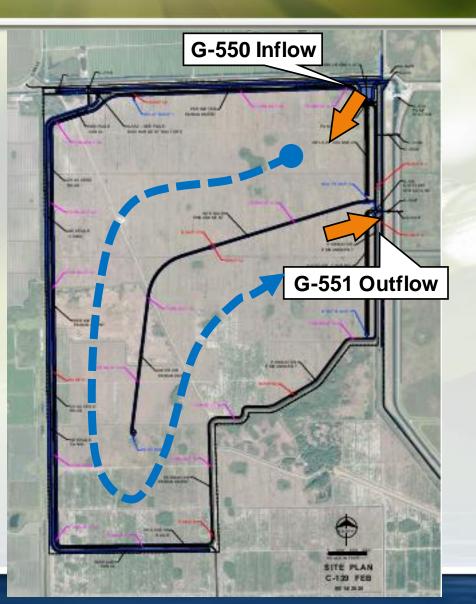
SOUTH FLORIDA WATER MANAGEMENT DISTRICT

G-341 Related Conveyance Improvements Bolles East Canal

Excavation of Segment 4



Dewatering Activities - Looking East


Dewatered Segment - Looking West towards SR7

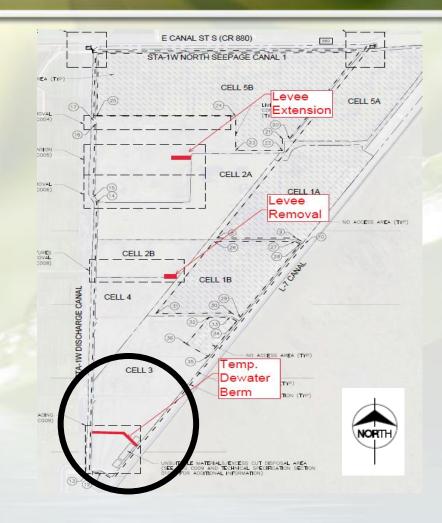
SOUTH FLORIDA WATER MANAGEMENT DISTRICT

C-139 Flow Equalization Basin

C-139 Flow Equalization Basin

- Inflow Pump Station captures runoff from the C-139 Basin
- ➤ FEB provides approximately 10,500 acre-feet of storage and pre-treatment at its maximum storage of 4-feet deep
- Discharges stored water to STA-5/6 for treatment
- Includes 690 cfs inflow pump station and 690 cfs outflow structure
- Awarded at December 10, 2020 Governing Board meeting to Condotte-Ryan JV for \$79,933,411. NTP was on February 1, 2021

STA Refurbishments – STA-1E



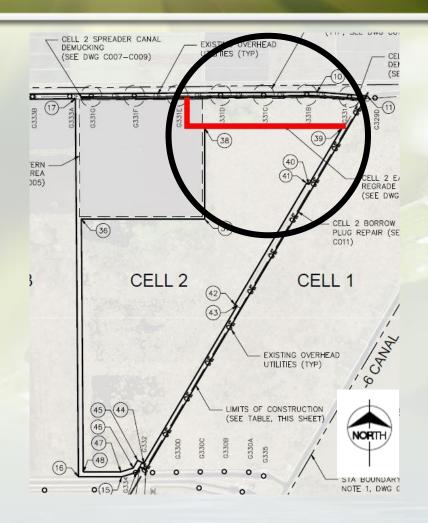
STA-1E Cell 6 – Berm Degrade Facing East

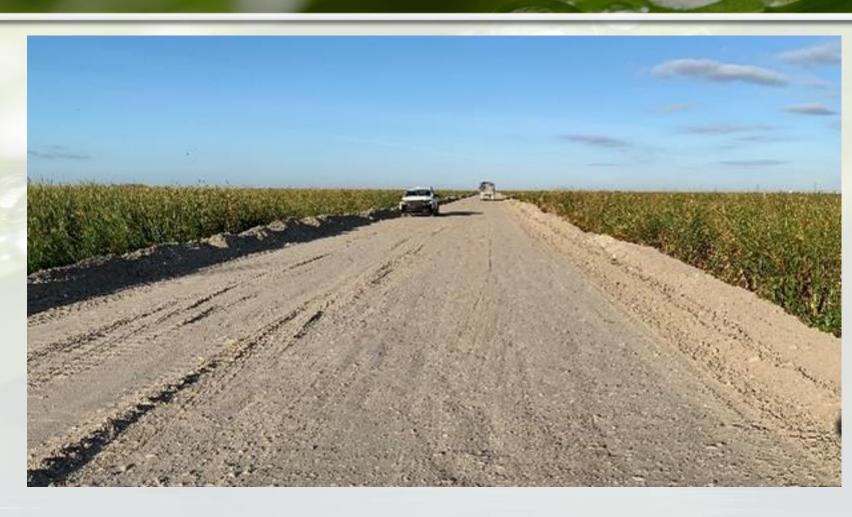
STA-1E Cell 6 - Berm Degrade Plan

STA Refurbishments – STA-1W

STA-1W Schematic

STA-1W Cell 3 – Dewatering Berm (Regrade Prep)


STA Refurbishments – STA-1W



STA-1W Schematic

STA-1W Cell 5B/2A Levee Extension - Start

STA Refurbishments – STA-2

STA-2 Schematic

STA-2 Cell 2 Dewatering Berm Facing East

Presenter: Lucine Dadrian

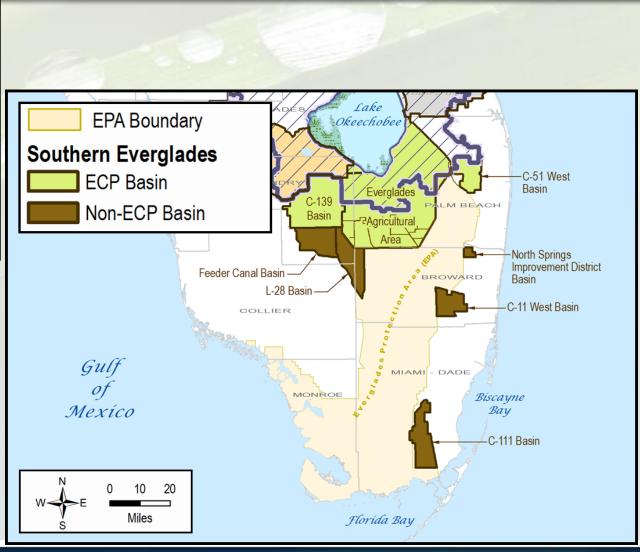
SOUTH FLORIDA WATER MANAGEMENT DISTRICT

EASTERN FLOW PATH					CENTRAL FLOW PATH			
STA-1W Expansion #2 (100864)			G-341 Related Conveyance Improvements (100802)			STA-2 Expansion: Compartment B		
Activity	Deadline		Activity	Deadline		Activity COMPLETE	Deadline	
Complete land acquisition	3/31/2018	✓	Initiate design 1		✓	Initial flooding and optimization period complete	5/31/2014	✓
Initiate design	10/1/2018	~	Submit state and federal permit applications	8/1/2021	✓			
Submit state and federal permit applications	8/1/2019	~	Complete land acquisition (if required)	9/30/2021		A-1 FEB (100706)		
Complete design	7/31/2020	~	Complete design 7	7/31/2022		Activity	Deadline	
Initiate construction	11/30/2020	✓	Initiate construction 1	1/30/2022	✓	Initiate design	4/1/2012	~
Construction status report	3/1/2021		· · · · · · · · · · · · · · · · · · ·	3/1/2023		Submit state and federal permit applications	12/1/2012	~
Construction status report	3/1/2022		· · · · · · · · · · · · · · · · · · ·	3/1/2024		Design status report	3/1/2013	~
Complete construction	12/31/2022		Complete construction 1	12/31/2024		Complete design Initiate construction COMPLETE	8/1/2013	1
Initial flooding and optimization period complete	12/31/2024						6/30/2014	Y
CTA 414/T			L-8 Divide Structure (100817)	- ···		Construction status report	3/1/2015	Y
STA-1W Expansion #1 (100818)			•	Deadline		Construction status report	3/1/2016	4
Activity	Deadline	1		10, 1, 2012	√	Complete construction	7/30/2016	*
Complete land acquisition	9/30/2013	*	complete design — — — — — — — — — — — — — — — — — — —	2, 20, 202.	~	Operational monitoring and testing period complete	7/29/2018	•
Initiate design	9/30/2013			, _,		WESTERN FLOW PATH		
Submit state and federal permit applications	7/30/2014	√	Complete construction S	9/30/2018	✓			
Complete design COMPLETE	7/30/2015	✓.				STA-5/6 Internal Improvements (100868)		
initiate construction — — — — — —	1/31/2016	V	S-5AS Modifications (100822)			Activity	Deadline	
Construction status report	3/1/2017	√		Deadline	_		10/31/2019	✓.
Construction status report	3/1/2018	√		, _,	_	Submit state and federal permit applications	8/30/2020	✓.
Complete construction	12/31/2018	1		5,55,252.			10/31/2021	1
Initial flooding and optimization period complete	12/31/2020	✓		, _,	\	Initiate construction	1/31/2022	1
CTA 15 Denoise and Mandifications			Complete construction 9	9/30/2016	•	Construction status report	3/1/2023	'
STA-1E Repairs and Modifications	Dandling		S 275 F (100910)			Construction status report	3/1/2024	*
Activity	Deadline	1	S-375 Expansion (100819)	Dandlin.			12/31/2024	Ť
PSTA Decommissioning complete	12/31/2022	*	, 	Deadline	/	Initial flooding and optimization period complete	12/31/2025	I .
Culvert repairs complete	12/31/2022 12/31/2022	•		-,,	/	STA-5/6 Expansion: Compartment C		
Cell 5 and 7 improvements complete	12/31/2022	•		.,,	_	CONTRE	Deadline	
L-8 FEB (100813)					/	Activity Initial flooding and optimization period complete	5/31/2014	1
Activity	Deadline		Complete construction 1	12/31/2018	•	Initial flooding and optimization period complete	3/31/2014	1.
Submit state and federal permit applications	1/31/2014	1				C-139 FEB (100867)		
Construction status report	3/1/2014	1	LEGEND			Activity	Deadline	
Construction status report	3/1/2014	1	Flow Equalization Basin			•	10/31/2018	1
Complete construction (begin multi-purpose ops)	12/31/2016	1	Stormwater Treatment Area			Submit state and federal permit applications	8/30/2019	1
Long term operations commence	12/31/2022		Conveyance Improvement				10/31/2020	1
	12,01,2022		✓ Complete			Initiate construction	1/31/2021	1
Proie	cts Complete =	7 of 1				Construction status report	3/1/2021	
Activities Complete = 57 of 74						Construction status report	3/1/2022	
% Activities Complete = 77 %						Construction status report	3/1/2023	
	ne Complete =					·	12/31/2023	
			Last 4 Projects are in Const	tructio	n	· · ·	12/31/2024	

Contact Information

Lucine Dadrian
ldadrian@sfwmd.gov

SFWMD Southern Everglades Nutrient Source Control Program Update


Youchao Wang, P.E.
Steve Sarley, P.E.
Ecosystem Restoration and Capital Projects

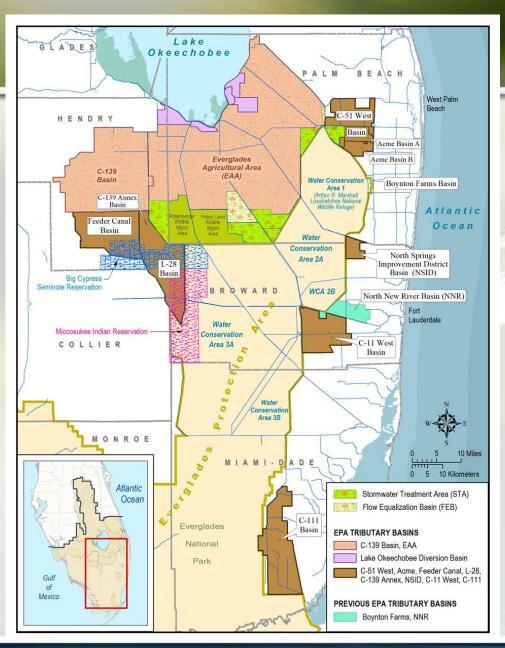
18th Annual Public Meeting on the Long-Term Plan for Achieving Water Quality Goals for the Everglades Protection Area Tributary Basins February 22, 2021

Basins Tributary to the Everglades Protection Area

Long Term Plan Project Objectives

Restoration Strategies

Long-term Plan


Everglades Forever Act (EFA)

The Long-Term Plan recommends activities designed to:

"Maintain and improve upon the contribution of source controls to overall water quality improvement goals."

Specifically:

- Identify discharges that are candidates for implementation of cost-effective source controls
- Characterize management practices on lands or processes tributary to those discharges
- Implement these source controls in concert with landowners or municipalities

Contents

- EAA and C-139 Basins
 - Regulatory activities
 - Research and demonstration projects
 - Sub-regional source control projects
- Other Tributary Basins
 - Regulatory and cooperative activities
 - Permit integration

WY2020 Phosphorus Data by Basin

Basin	Receiving Water Body	WY2020 TP Load (metric tons)	WY2020 TP FWMC (μg/L)
Everglades Agricultural Area (EAA)	STAs and Lake Okeechobee	73	86
C-139	STA 5/6 and EAA	36	217
C-51 West and ACME	STA-1E and C-51 East Basin	12	87
L-28	Water Conservation Area (WCA) 3A	4	54
C-11 West	WCA-3A	3	13
Feeder Canal	WCA-3A	3	78
C-111 *	Everglades National Park	2	6
North Springs Improvement District (NSID)	WCA-2A	0	-
North New River (NNR)	Coastal Broward County	0	
Boynton Farms	Lake Worth Drainage District	0	-

EAA and C-139 Basin Source Control Programs

Chapter 40E-63

Permit-level compliance

Basin-level water quality compliance

Research and Demonstration

Supplementary Projects

EAA

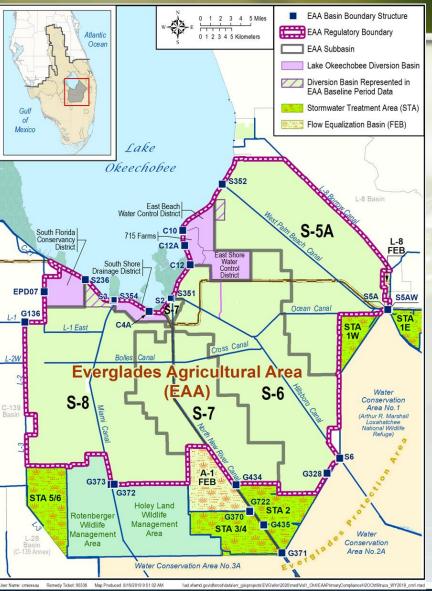
- Comprehensive BMPs
- Permittee water quality monitoring
- Post-permit compliance activities

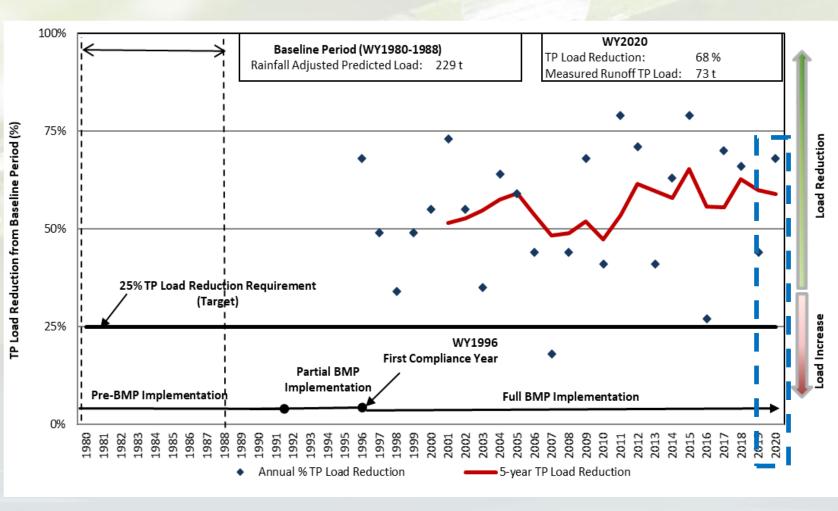
Reduce TP Loads by 25% in comparison to pre-BMP period levels

EAA Everglades Protection District (EAAEPD) Research Master Permit

Restoration Strategies EAA Eastern Flow path source control projects

C-139 Basin

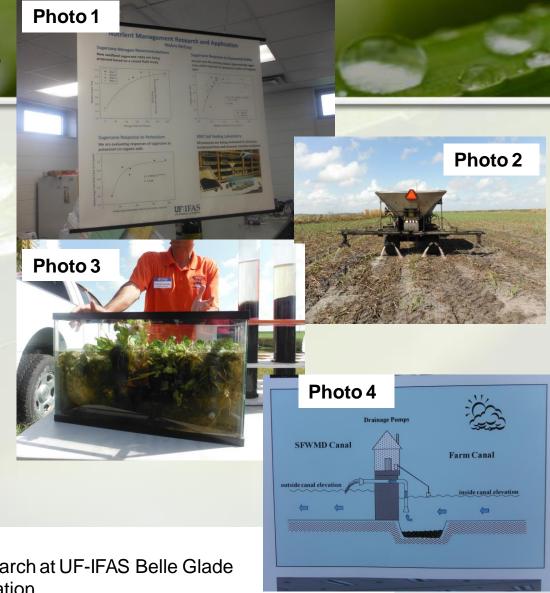

- Comprehensive BMPs
- Sub-basin water quality monitoring
- Post-permit compliance activities


Maintain TP Loads below pre-BMP period levels

Demonstration projects in partnership with landowners

Upstream monitoring initiatives

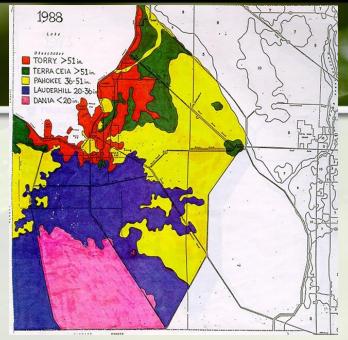
EAA Basin-Level Compliance 25% Reduction in TP Load



EAA BMP Master Research Permit

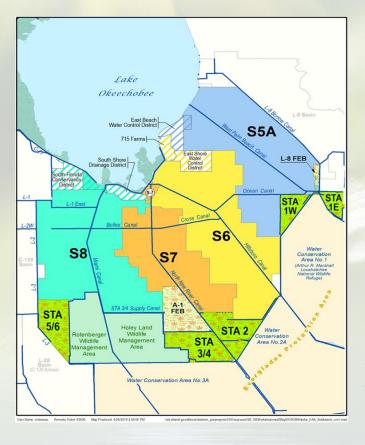
comprehensive The EFA requires a of research, testing and program implementation of BMPs.

- A 5-year Master Research Permit was issued on September 15, 2020.
- Qualified experts
- Identify appropriate BMPs
- BMPs field-tested in representative sites
- Soil, crops, other factors affecting BMP design and effectiveness
- **Outreach and Training**



Photos:

- 1. Soil Testing Research at UF-IFAS Belle Glade
- 2. Controlled application
- 3. Aquatic vegetation and sediments research at UF-IFAS
- 4. Discharge pump diagram at UF-IFAS


EAA BMP Master Research Permit

- Scope: Implementation and Verification of BMPs to Reduce Everglades Agricultural Area Farm P Loads: Evaluation of performance differences of EAA farm basins with similar BMPs
 - **Hypotheses:** TP in discharges is higher with:
 - Certain prior crops/land uses;
 - Deeper soils; and
 - Soils that do not promote high P retention due to native properties or prior cropping activities
- Objective 1: Evaluate the effect of organic soils chemistry and properties, and land management on Total Phosphorus (TP) in farm discharges.
- Objective 2: BMP Education and Extension Activities: Use the information from this research to determine what BMPs work most effectively on farms in the EAA with similar soil, crop, and management conditions

Priority Permit Basins Consultations

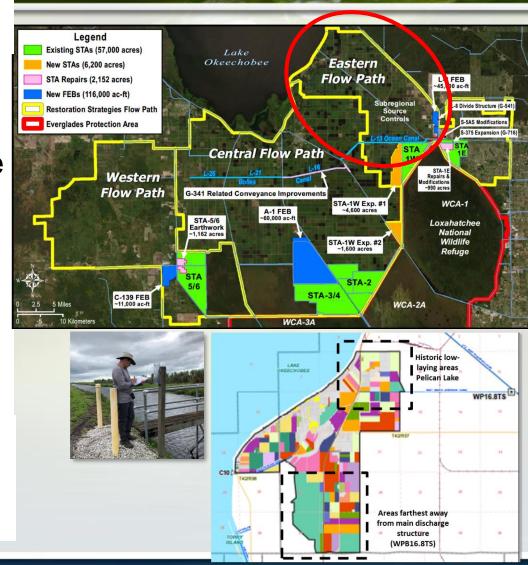
- Six permit basins were identified in the EAA as priority based on greater contribution in EAA Restoration
 Strategies flow paths
- Voluntary consultations by UF IFAS in the five agricultural basins
- Preliminary report for Task 1 is expected at the end of February 2021

Task 1

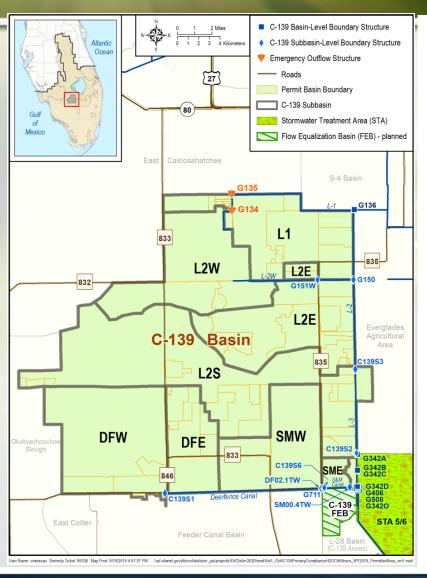
Site visit, interview with grower, review of documentation. Produce Preliminary Report

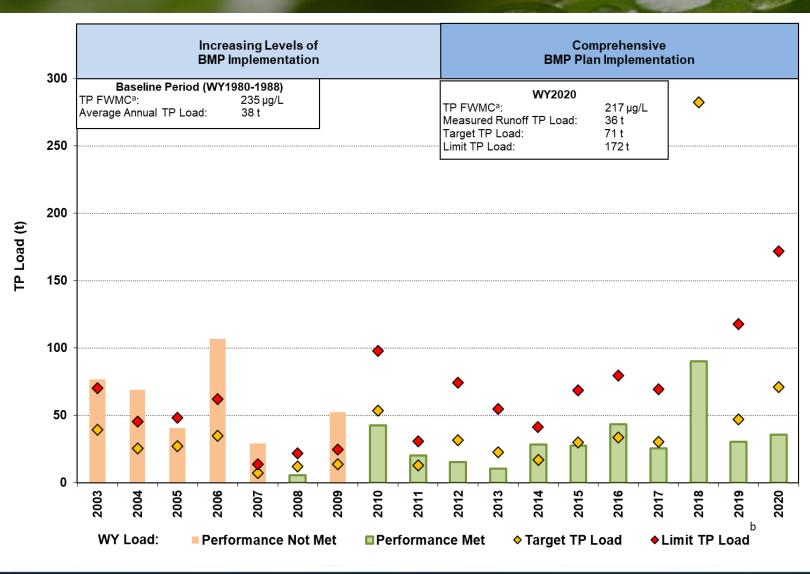
Task 2

UF IFAS provides recommendations for reducing phosphorus. IFAS with growers identify farm units to implement recommendations

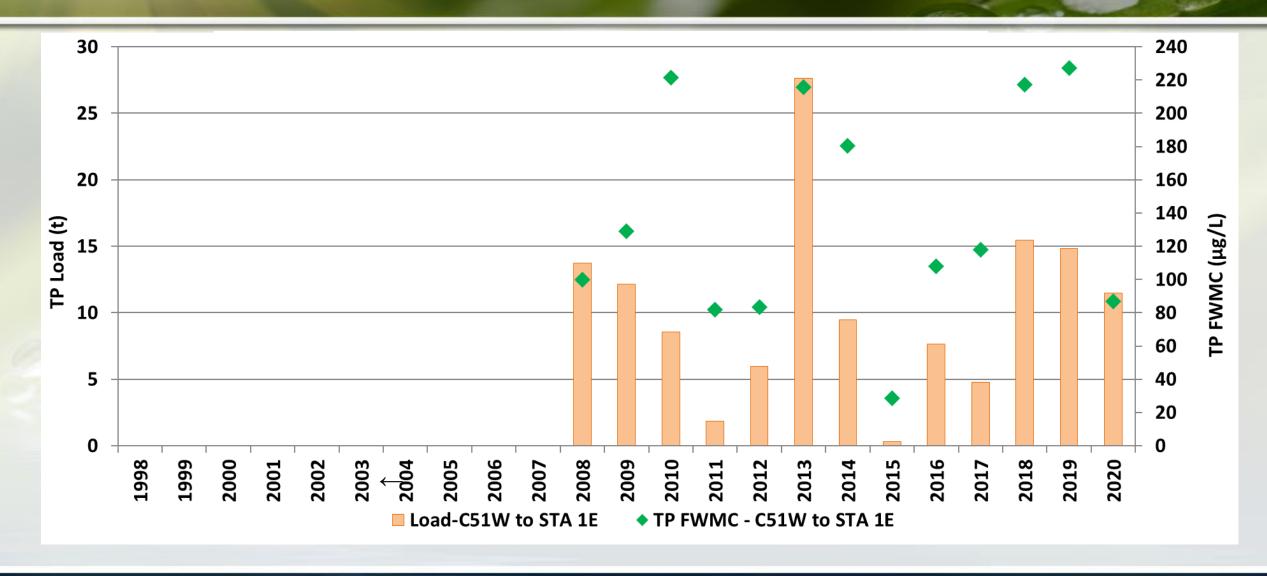

Task 3

Implementation for 3 years. As needed phosphorus speciation data may be collected to evaluate if the recommendations have reduced phosphorus

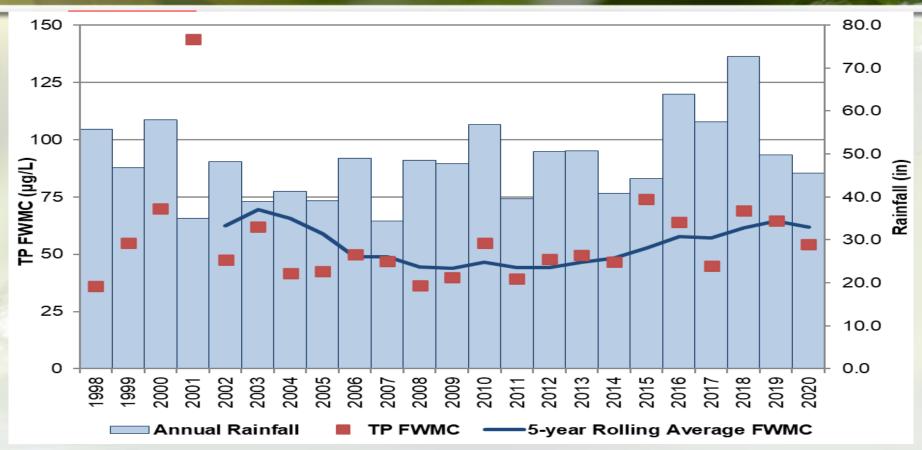

Task 4
IFAS produces a final report


Restoration Strategies Sub-regional Source Controls

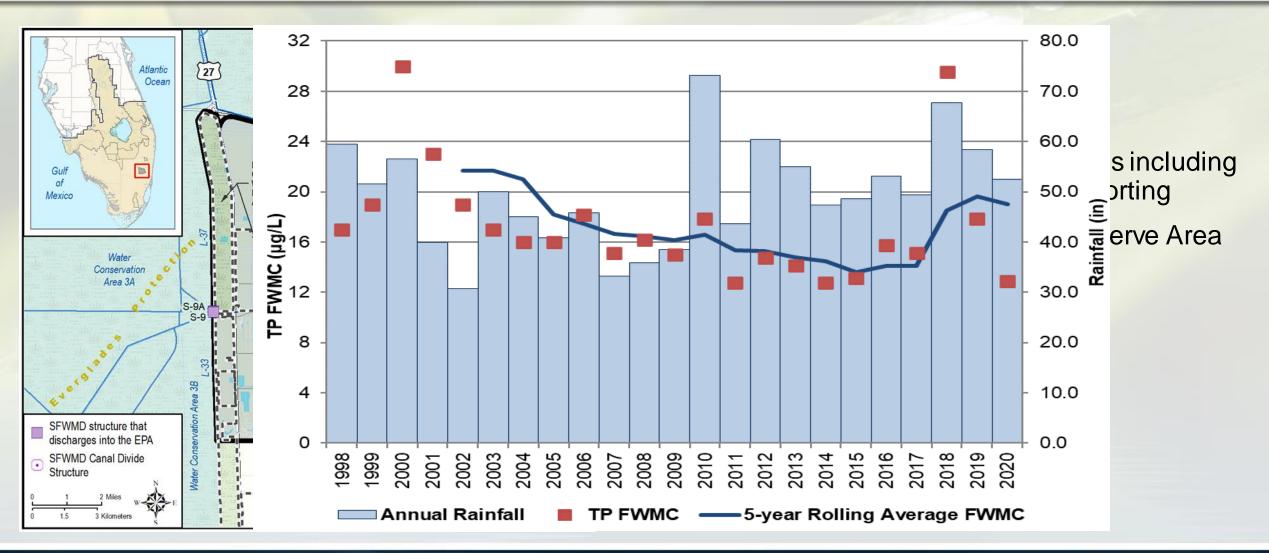
- > Build on the SFWMD regulatory BMP program
 - ➤ Projects...
 - Strategic on-site locations or sub-regional source control projects in series with on-site BMPs
 - Focus on areas and projects with the greatest potential to improve water quality
 - Designed to increase retention or detention of TP above what is currently required
 - Evaluating the feasibility of more flexible water management approaches in the East Beach Water Control District



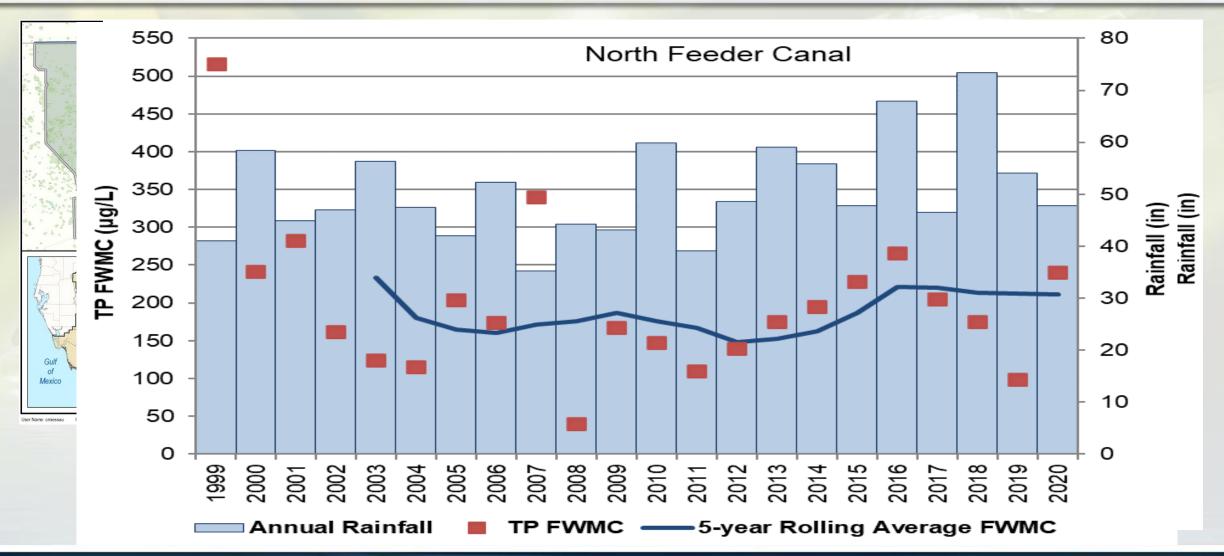
C-139 Basin Level Compliance TP Load below historic levels



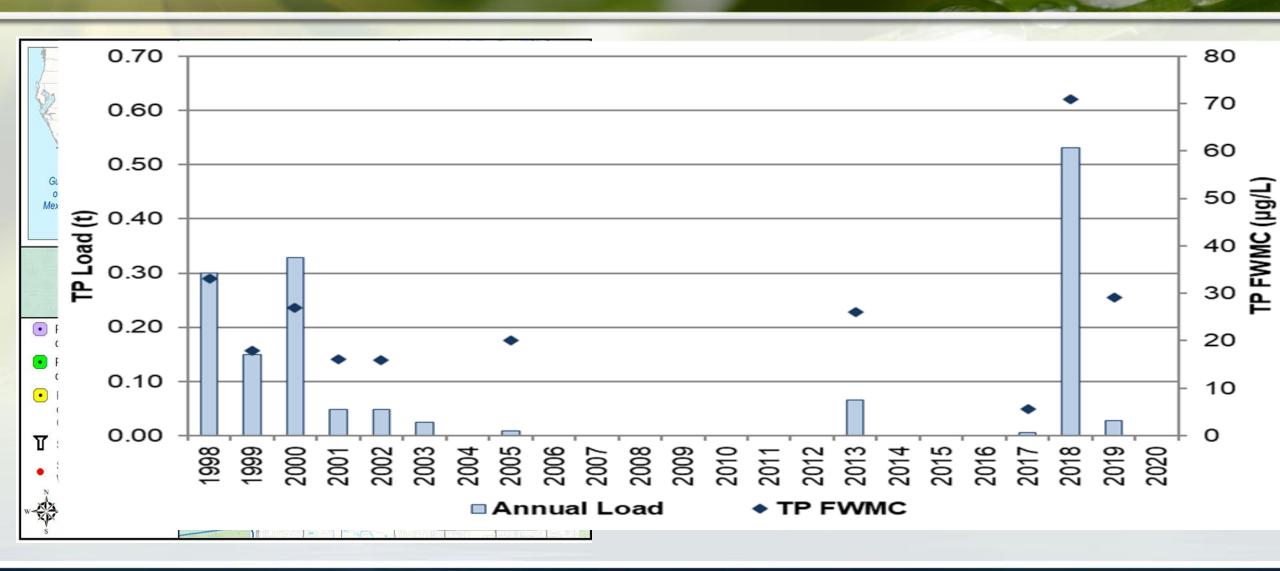
C-51 West and ACME Basin



L-28 Basin



- Environmental Resource Permit to Southern Gardens Groves includes conditions for Best Management Practices
- Other projects: C-139 Flow Equalization Basin and Sam Jones Abiaki Prairie Restoration
 - CERP Big Cypress/L-28 Interceptor Modification (WERP)


C-11W Basin

Feeder Canal Basin

NSID Basin

Summary

- Regulatory programs
- Cooperative agreements
- > Integration with ERP conditions

Program improvement

Synergize benefits with regional and subregional projects

- Verification of implementation
- Water quality monitoring to ensure effectiveness
- BMP research and demonstration projects
- Data collection and supplemental evaluations
- Restoration Strategies source control projects
- CERP and others

Additional Information

Everglades and Estuaries Protection Bureau

www.sfwmd.gov/sfer

Contact Information

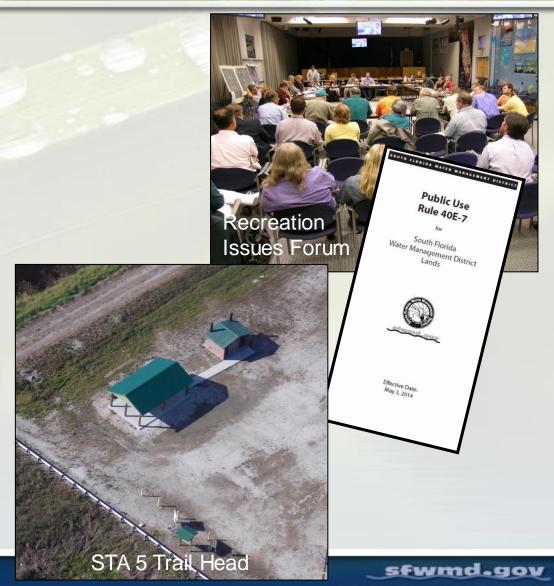
Youchao Wang
ywang@sfwmd.gov
or
Steve Sarley
ssarley@sfwmd.gov

Public Use on SFWMD Stormwater Treatment Areas

Jerry Krenz Sr. Project Manager Land Resources 18th Annual Public Meeting on the Long-Term Plan for Achieving Water Quality Goals for the Everglades Protection Area Tributary Basins February 22, 2021

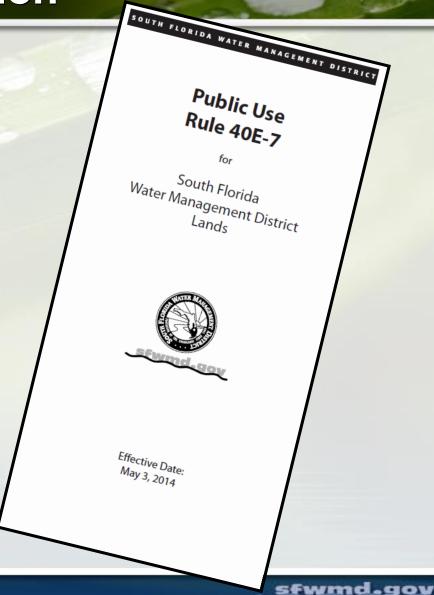
Public Use On STAs

- Public Use on District Lands
 - Why have Public Use?
 - Policy and Rules
 - Recreation Partnerships
 - STA


Public Use Program Background Information

- Why Have Public Use?
 - 373.4592 "the district shall allow these areas to be used by the public for recreational purposes... unless such uses are incompatible with the restoration goals of the Everglades Construction Project.."
 - SFWMD Created
 - Public Use Policy, 2004
 - Public Use Rules, 2006

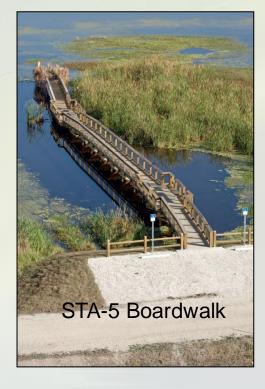
Public Use Program Background Information


- Public Use Policy
 - Public Participation
 - Recreation Issues Forum
 - Project Purposes First
 - Different rules for different types of lands
 - Not interfere with intent of the project
 - Project Planning, Design and Construction
 - Incorporate recreation facilities

Public Use Program Background Information

Public Use Rule 40E-7

- Rules provide commitment for public access and nature-based recreation on District lands consistent with state statutes and District policy
- Types of Land include
 - Conservation
 - Interim
 - Right of Way
 - Project Lands


STA Activities and Facilities

- Public access, open on "extended weekends" Friday Monday
- Daylight hours
- Bird watching, hiking, biking
- Fishing
- FWC hunting alligator and waterfowl
 - Friday waterfowl hunts

STA-1W and STA-3/4

Public Use Program Partnerships – Audubon, Florida Trail

- Audubon Society- Cooperative guided bird-watching tours on the STAs.
 - 1st Audubon tour in 2005 at STA-5, now 3 Chapters leading over 65 tours with 1,600+ participants at STA-1E, STA-2 and STA-5/6
- Florida Trail Association

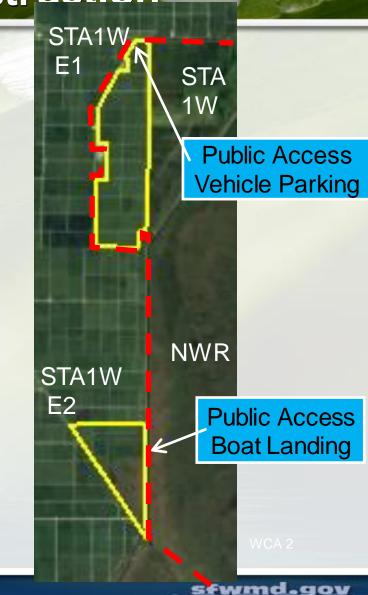
Presenter: Jerry Krenz

Public Use Program Partnerships- FWC

- Florida Fish & Wildlife Conservation Commission
 - Waterfowl & alligator, quotas
 - Specialty hunts
 - Youth and wounded warrior
 - Enforce all public use rules

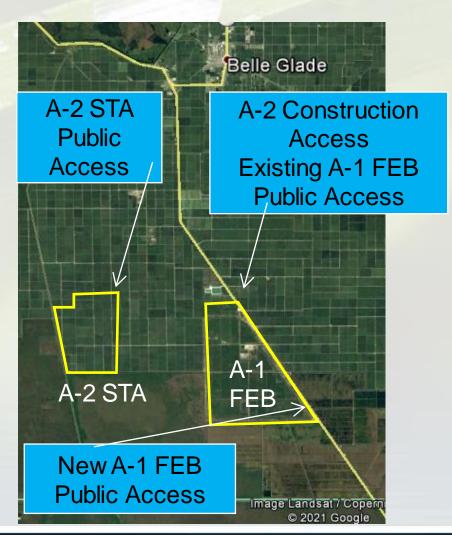
Public Use on STAs

- Project / Constructed Wetlands
 - Stormwater Treatment Areas



Public Use Program Coordination with Multiple Construction Projects

- Project Purposes First
 - Waterfowl and alligator quotas
 - Noticed FWC and stakeholder to prepare for changes and uncertainty
 - Alligator hunters noticed season may end early
 - Coordinated with FWC to offer waterfowl quotas, only early portion of season
 - Closed southern STA 1W and northern STA 2
 - Changed check station locations and access routes
 - As construction progressed offered additional waterfowl quotas at end of season


Public Use Program Project Planning, Design and Construction

- Public Use Facilities
 - STA 1W E1
 - Public access vehicle parking
- Bike trail connection east and south bound
 - STA 1W E2
 - No vehicle parking on site
 - FWC check station vehicle access to be off site
 - Public access boat landing, camping on NWR side
- Bike trail connection north and south bound

Public Use Program Project Planning, Design and Construction

- Public Use Facilities
- A-1 FEB
 - Creating new SE access point to avoid current construction access routes to A-2 STA and A-2 Reservoir
 - A-2 STA
 - Road to be along north side of A-1 FEB and A-2 Reservoir
 - Public access vehicle parking,
 - Trail shelter in SE corner

Public Use Program Project Planning, Design and Construction

- Public Use Facilities
 - C-139 FEB
 - Public vehicle parking
 - Lake Hicpochee FEB
 - Public vehicle parking

18th Annual Public Meeting on the Long-Term Plan for Achieving Water Quality Goals for the Everglades Protection Area Tributary Basins

Public Comment